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Abstract. The problem of superposition of two corresponding vector sets by minimizing their

sum-of-squares error under orthogonal transformation is a fundamental task in many areas of

science, notably structural molecular biology. This problem can be solved exactly using an algo-

rithm whose time complexity grows linearly with the number of correspondences. This efficient

solution has facilitated the widespread use of the superposition task, particularly in studies

involving macromolecular structures. This paper formally derives a set of sufficient statistics

for the least-squares superposition problem. These statistics are additive. This permits a highly

efficient (constant time) computation of superpositions (and sufficient statistics) of vector sets

that are composed from its constituent vector sets under addition or deletion operation, where

the sufficient statistics of the constituent sets are already known (that is, the constituent vector

sets have been previously superposed). This results in a drastic improvement in the run time

of the methods that commonly superpose vector sets under addition or deletion operations,

where previously these operations were carried out ab initio (ignoring the sufficient statistics).

We experimentally demonstrate the improvement our work offers in the context of protein

structural alignment programs that assemble a reliable structural alignment from well-fitting

(substructural) fragment pairs. A C++ library is available under an open-source license from

http://www.csse.monash.edu.au/~karun/superpose3D.

1 Introduction

Optimal superposition of two corresponding vector sets is a commonly used method to measure spatial

similarity of three-dimensional (3D) objects. In this method, treating both the vector sets as rigid

bodies, one set is rotated and translated to fit on another. Such superposition of vector sets permits

the evaluation of shape similarity both qualitatively and visually. A nearly universal criterion of

optimality for the superposition problem is the one that minimizes the sum of squared deviations

between the corresponding vectors after superposition (or least-squares superposition, in short). This

yields a reliable quantitative measure of similarity, the root mean square deviation (or r.m.s.d.) between

vector sets (Eidhammer et al., 2004; Lesk, 2000, 2001).

Many approaches to address the least-squares superposition problem in three dimensions (3D) have

been proposed over the years (Cohen, 1997; Coutsias et al., 2004; Cox, 1967; Diamond, 1988; Kabsch,

1976, 1978; Kearsley, 1989; KenKnight, 1984; Koehl, 2001; Lesk, 1986; Mackay, 1984; McLachlan,

1972, 1982). It is indeed remarkable that this problem can be solved exactly and efficiently, and in-

volves a computational effort that grows linearly with the number of correspondences in the vector
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sets. Noteworthy of the approaches to solve the superposition problem is the method by Kabsch

(1976) that allows computing the optimal transformation via singular value decomposition of a co-

variance matrix derived from the coordinates of the corresponding vector sets. An equivalent, and

more analytically elegant, approach for this problem proposed by Kearsley (1989) uses the algebra

of quaternions (Hamilton and Hamilton, 1866). Quaternions are generalizations of complex numbers

with direct applications to orthogonal transformations in three dimensional (3D) space. Specifically,

the space group corresponding to unit quaternions is equivalent to the group of all possible proper

3D rotations defined about an arbitrary origin. Any pure rotation in 3D by an angle θ about some

normalized axis n̂ passing through the origin can be represented using a unit quaternion denoted

by

[
cos

(
θ

2

)
, n̂ sin

(
θ

2

)]
. Among the key advantages of using Kearsley’s method to solve the least-

squares superposition problem are:

1. the problem can be solved analytically as an eigenvalue and eigenvector problem in quaternion

parameters, and

2. the method avoids problems with singularities (and rotary inversions) that can result from Kab-

sch’s method, where these oddities are handled explicitly after the solution is found (Coutsias

et al., 2004; Kearsley, 1989)

Structural molecular biology employs least-squares superposition to support a wide variety of tasks.

An example is the role of superposition in programs for aligning protein 3D structures (Kolodny et al.,

2005; Konagurthu et al., 2006; Lackner et al., 2000; Lesk, 1986; Shatsky et al., 2002, 2004; Shindyalov

and Bourne, 1998; Vriend and Sander, 1991; Ye and Godzik, 2003). A structural alignment is the

assignment of amino acid residue-residue correspondences between proteins based on the similarity

of their structural contexts (Konagurthu et al., 2006). Among the commonly used heuristics to align

protein structures are the ones that rely on identifying a library of well-fitting fragments (or contiguous

substructures) within the protein structures being aligned. This library is then refined by jointly

superposing the fragment pairs and determining the pairs that fit consistently, from which a structural

alignment is finally assembled.

The joint superpositions in the current structural aligners are computed from scratch, even though

previous superpositions of constituent fragment pairs provide a lot of information about the joint

superposition. We can see that the number of joint superpositions grows quadratically in the size

of the well-fitting fragment-pairs library, where each joint superposition takes a computational effort
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that is linear in the size of the combined vector sets. On average, when aligning a pair of homologous

protein structures, there are well in excess of thousand well-fitting fragment pairs, exhaustively requir-

ing millions of joint superpositions before a structural alignment can be assembled. This exhaustive

step poses a significant computational bottleneck for structural aligners, and, therefore, this prob-

lem is commonly mitigated by invoking joint superpositions rather restrictively, trading off potential

structural alignment quality for speed.

In this paper we explore the foundations of the orthogonal superposition problem and derive a set

of statistics that are sufficient to compute the r.m.s.d of the best superposition, and its corresponding

rotation and translation parameters. We demonstrate that these sufficient statistics (Hogg and Craig,

1994) are additive. Therefore, these statistics can be used to compute new superpositions in constant

time using the sufficient statistics of superpositions of constituent vector sets under addition and

deletion operations. Using sufficient statistics results in a drastic speed up of tasks like joint superpo-

sition described above, compared to the current approaches that recompute these superpositions from

scratch.

Organization: Section 2 gives the background to the orthogonal superposition problem using the

least-squares criterion. Section 3 introduces the notion of sufficient statistics, and derives the full

set of sufficient statistics for the orthogonal superposition problem. Section 4 provides the update

rules to update the superposition parameters in constant-time, building on the sufficient statistics of

constituent superpositions. Section 5 describes an approach to speed up the diagonalization step used

in the Kearsley approach. Finally, the paper ends with an experimental evaluation of performance

gain achieved using the results of this work.

2 Orthogonal superposition

Formally let U = {u1, · · · ,un} and V = {v1, · · · ,vn} denote two vector sets with one-to-one cor-

respondence. In this paper we consider vectors in three dimensions. Let the (x, y, z) components of

each ui be represented here as (ui(x),ui(y),ui(z)). (Similar representation holds for vi or any other

vector.)

The least-squares superposition problem is an optimization problem that involves finding the

orthogonal rotation R and translation t with the optimality criterion defined as:

E = min ‖RU + t− V‖2 = min

n∑
i=1

‖Rui + t− vi‖2 = min

n∑
i=1

〈Rui + t− vi,Rui + t− vi〉
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where 〈·, ·〉 denotes the inner product between the stated terms, R is a 3 × 3 pure rotation matrix,

and t is a translation vector.

Under this least-squares criterion, the optimal translation can be made independent of the optimal

rotation as follows. Differentiating E with respect to t and evaluating it at its extremum

∂E
∂t

=
∂

∂t

n∑
i=1

〈Rui + t− vi,Rui + t− vi〉 = 2

n∑
i=1

∂(Rui + t− vi)

∂t
(Rui + t− vi) = 0

=⇒
n∑

i=1

Rui + t− vi = 0 =⇒ t =

∑n
i=1 vi

n
−R

∑n
i=1 ui

n
= Centroid(V)−R Centroid(U)

It follows that moving each of the vector sets to an origin at its centroid, about which the rotation

is defined, gives us a modified (but equivalent) objective which is independent of the translation t:

E = min

n∑
i=1

|Ru′i − v′i|2, where ui
′ = ui −Centroid(U) and vi

′ = vi −Centroid(V).

Kearsley (1989) proposed an elegant method that removes the non-linear aspect to this least-

squares problem and transforms it into an eigenvalue problem of the form Qq = λq, or in expanded

terms



∑
(x2m + y2m + z2m)

∑
(ypzm − ymzp)

∑
(xmzp − xpzm)

∑
(xpym − xmyp)∑

(ypzm − ymzp)
∑

(x2m + y2p + z2p)
∑

(xmym − xpyp)
∑

(xmzm − xpzp)∑
(xmzp − xpzm)

∑
(xmym − xpyp)

∑
(x2p + y2m + z2p)

∑
(ymzm − ypzp)∑

(xpym − xmyp)
∑

(xmzm − xpzp)
∑

(ymzm − ypzp)
∑

(x2p + y2p + z2m)





q1

q2

q3

q4


= λ



q1

q2

q3

q4


(1)

As seen above, Q is a 4× 4 square symmetric matrix and q = (q1, q2, q3, q4)
T

are the unknown (to

be solved) quaternion components associated with a 3D rotation, and λ is an (unknown) eigenvalue.

In the eigenvalue problem defined in Equation 1, the notation xm, a scalar quantity, denotes the

component-wise difference v′i(x) − u′i(x) (equivalent notations for ym and zm) and the scalar xp

denotes the component-wise sum v′i(x) +u′i(x) (equivalently, yp and zp). From this point onwards, we

use the term quaternion matrix to refer to the 4× 4 matrix Q shown in Equation 1.

Diagonalizing Q yields four eigenvalues and (corresponding) eigenvectors. Kearsley (1989) shows

that the eigenvector corresponding to the smallest eigenvalue, λmin, corresponds to the best rotation

producing the least squares error, and the r.m.s.d is computed as

√
λmin

n

Time complexity The computational effort required to solve the rigid-body superposition problem

using Kearsley’s quaternion approach (or equivalently Kabsch’s approach) grows linearly with the

number of vectors being superimposed. In Kearsley’s approach this is dominated by the computation
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of the quaternion matrix Q where each of 10 distinct terms in the matrix requires O(n) effort. The

diagonalization of Q is independent of n and shows a rapid convergence with numerical methods such

as Jacobi’s diagonalization algorithm (Jacobi, 1846).

3 Sufficient Statistics

We note that this rigid-body superposition problem is a geometric instance of the general regression

problem using total least-squares, where a regression line has to be determined that minimizes the

sum-of-squares error with respect to the observed data points.

The error terms of this regression problem are assumed to be normally distributed as N (0, σ),

where the mean µ is 0 and σ is the standard deviation which is minimized by the problem. In fact,

the least squares estimator of σ is also its maximum likelihood estimator.

More formally, consider the standard normal distribution of some random variable x:

N (x|µ, σ) =
1√
2πσ

exp

[
− (x− µ)2

2σ2

]
This normal density can be reparameterized into a general form denoting the family of exponential

distributions: f(x|η) = h(x)g(η) exp(ηTU(x)) where h(x) =
1√
π

, g(η2) =
√
−η2 exp

(
η21
4η2

)
, ηT =

(
µ

σ2
,− 1

2σ2
), UT (x) = (x, x2).

This transformation can be used to show certain important properties that allows efficient com-

putation of maximum likelihood estimators of µ and σ.

Considering a sample set of observations that are normally distributed X = {x1, x2, · · · , xn}. The

likelihood for these samples is given by:

f(X|η) =

(
n∏

i=1

h(xi)

)
(g(η))

n
exp(ηT

n∑
i=1

u(xi))

Taking natural logarithms on both sides gives us the log likelihood:

log(f(X|η)) = κ+ n log (g(η)) + ηT
n∑

i=1

U(xi)

where κ =

n∑
i=1

log(h(xi)) is a term independent of η.

To find the maximum likelihood estimators η̂, take the gradient with respect to η and set to 0.

This results in:

n∇η̂ [log (g(η̂))] +

n∑
i=1

U(xi) = 0 =⇒ −∇η̂ [log (g(η̂))] =
1

n

n∑
i=1

U(xi) =
−1

g(η̂)
∇η̂g(η̂) =

1

n

n∑
i=1

U(xi)
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Notice that maximum likelihood estimate η̂ depends on the statistic

n∑
i=1

U(xi) rather than the indi-

vidual data. This suggests that to obtain the maximum likelihood estimate we do not need the data

explicitly as it can be derived from that statistic. This sufficiency to derive the maximum likelihood

estimator without explicit consideration of data makes

n∑
i=1

U(xi) a sufficient statistic for the expo-

nential family of functions. For normal distribution, we saw earlier that U(xi) = (xi, x
2
i ) gives the

sufficient statistics of

n∑
i=1

xi and

n∑
i=1

x2i (Hogg and Craig, 1994).

Sufficient statistics for orthogonal superposition

For the orthogonal superposition problem, each (x, y, z) component of the error vector, εi = Rui
′−vi′,

is also assumed to be normally distributed. That is, εi(x) ∼ N (0, σ), εi(y) ∼ N (0, σ), and εi(z) ∼

N (0, σ). We now derive the sufficient statistics for σ of {εi(x), εi(y), , εi(z)} terms.1 The likelihood of

the observed normally distributed errors after superposition, E = {ε1(x), ε1(y), ε1(z) . . . , εn(x), εn(y), εn(z), },

can be written as:

f(E|σ) =

3n∏
i=1

(2πσ2)−
1
2 exp

(
− 1

2σ2
‖Rui′ − vi′‖2

)
= (2πσ2)−

3n
2 exp

(
− 1

2σ2

n∑
i=1

‖Rui′ − vi′‖2
)

Let’s examine the decomposition of any ‖εi‖ term:

‖εi‖2 = ‖Rui′ − vi′‖2 = ‖ui′‖2 + ‖vi′‖2 − 2vi
′TRui

′. (2)

From Equation 1, the matrix Q is made up of terms of the form Am = v′i(A) − u′i(A) and Ap =

v′i(A)+u′i(A) where each A and B take the values x, y, or z denoting the vector components. Rewriting,

we get v′i(A) =
Ap +Am

2
and u′i(A) =

Ap −Am

2
. The first two terms on the right hand side of

Equation 2 can be expanded as follows:

‖ui′‖2 + ‖vi′‖2 = (u′i(x)2 + u′i(y)2 + u′i(z)
2) + (v′i(x)2 + v′i(y)2 + v′i(z)

2)

=
1

2
(x2m + x2p + y2m + y2p + z2m + z2p) =

1

2

∑
A∈{x,y,z}

A2
m +

1

2

∑
A∈{x,y,z}

A2
p (3)

The last term on the right hand side of Equation 2 can be expanded as vi
′TRui

′ = vi
′T[r1 r2 r3]ui

′

where r1, r2, r3 are column vectors of the 3× 3 rotation matrix R. Therefore,

vi
′TRui

′ = (vi
′.r1)u′i(x) + (vi

′.r2)u′i(y) + (vi
′.r3)u′i(z) (4)

1 Note that,
√

3σ is equal to the r.m.s.d. after least-squares superposition.
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Take the first term on the right hand side of Equation 4. This can be expanded as:

(vi
′.r1)u′i(x) = r11v

′
i(x)u′i(x) + r12v

′
i(y)u′i(x) + r13v

′
i(z)u

′
i(x)

=
r11
4

(xp + xm)(xp − xm) +
r12
4

(yp + ym)(xp − xm) +
r13
4

(zp + zm)(xp − xm)

=
r11
4

(x2p − x2m) +
r12
4

(ypxp − ypxm + ymxp − ymxm)

+
r13
4

(zpxp − zpxm + zmxp − zmxm)

where r11, r12, r13 are the terms in the r1 column vector in R. More generally,

(vi
′.r1)u′i(x) = c1A

2
p + c2A

2
m + c3ApBp + c4AmBm + c5AmBp (5)

where ck are constants in terms of components of r1.

Similarly, (vi
′.r2)u′i(y) and (vi

′.r3)u′i(z) can be expanded as above and will have the same form

as Equation 5, but with different constants. Therefore, combining Equations 3-4, Equation 2 can

expressed as

‖εi‖2 = ζ1
∑
A

A2
p + ζ2

∑
A

A2
m + ζ3

∑
∀A6=B

ApBp + ζ4
∑
∀A 6=B

AmBm + ζ5
∑
∀A 6=B

AmBp

where ζk are constants. Hence, the likelihood function can be written as

f(E|σ) = (2πσ2)−
3n
2 exp

(
− 1

2σ2
U

)
(6)

where U =

n∑
i=1

ζ1∑
A

A2
p + ζ2

∑
A

A2
m + ζ3

∑
∀A6=B

ApBp + ζ4
∑
∀A 6=B

AmBm + ζ5
∑
∀A 6=B

AmBp

 andA,B ∈

{x, y, z}.

Using Equation 6, the negative log-likelihood is given as:

L(E|σ) =
3n

2
log(2π) + 3n log σ +

1

2σ2
U (7)

The maximum likelihood estimate σ̂ can be determined by minimising Equation 7 and evaluating the

corresponding σ, i.e.
∂L
∂σ

= 0 =⇒ σ̂2 =
U

3n
.

U involves statistics that do not take into account the data (the coordinates of vector sets) explic-

itly, and are sufficient to estimate σ (and through it, r.m.s.d). Therefore the set of sufficient statistics

for the least-squares superposition problem can be defined as:

Ψ =

{
n∑

i=1

AmBm,

n∑
i=1

AmBp,

n∑
i=1

ApBp

}
(8)
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where A and B take the values {x, y, z}, Am = vi
′(A) − ui′(A) is the component-wise difference

(similarly Bm), and Ap = vi
′(A) + ui

′(A) is the component-wise sum (similarly Bp). Altogether

the set Ψ consists of 18 distinct statistics. Since, we translated the original vector sets these terms

are sufficient to compute the best rotation for the least-squares superposition problem. Further, the

sufficient statistics to compute the translation are simply the component-wise sums for each of the

two (untranslated) vector sets U and V.

4 Updating sufficient statistics

4.1 Updating sufficient statistics under an addition operation

Consider two pairs of corresponding vector sets: Q ↔ R containing n1 correspondences and S ↔ T

containing n2 correspondences. Let U be defined as a combination of vectors Q and S) and similarly V

as a combination of R and T . Let Ψ1 denote the sufficient statistics of the first pair after superposition

and Ψ2 denote the same for the second pair. Define these as:

Ψ1 =

{
n1∑
i=1

CmDm,

n1∑
i=1

CmDp,

n1∑
i=1

CpDp

}
,Ψ2 =

{
n2∑
i=1

EmFm,

n2∑
i=1

EmFp,

n2∑
i=1

EpFp

}
(9)

Where C,D,E and F take the values x, y, or z, denoting the respective components of vectors in

the sets. Consistent with the previous notation (see Equation 8), Cp and Cm (similarly Dp and Dm)

are the component-wise sums and differences between corresponding vectors in Q and R. The same

definitions hold for Em (and Ep) and Fm (and Fp), with respect to corresponding vectors in S and T .

We want to use Ψ1 and Ψ2 to compute a new set of sufficient statistics Ψ (defined in Equation 8)

for the superposition of vector sets U = Q+S with V = R+T . Below we derive the construction of the

new sufficient statistics. The statistics involved in computing the new centroids of the sets U and V,
n=n1+n2∑

i=1

ui(A) and

n=n1+n2∑
i=1

vi(A), can be trivially updated using the statistics

n1∑
i=1

qi(C),

n1∑
i=1

ri(D),

n2∑
i=1

si(E), and

n2∑
i=1

ti(F ). To compute the remaining statistics in Ψ, we define the following vectors:

α1 = Centroid(U)−Centroid(Q) β1 = Centroid(V)−Centroid(R)

α2 = Centroid(U)−Centroid(S) β2 = Centroid(V)−Centroid(T )

Also define ∆C
m = β1(C) − α1(C), ∆D

m = β1(D) − α1(D), ∆E
m = β2(E) − α2(E), and ∆F

m =

β2(F ) − α2(F ), where A = C = E ∈ {x, y, z} and B = D = F ∈ {x, y, z}. These vectors define
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the corrections (or updates) required to the constituent centroids so that the new centroid can be

constructed. Using these definitions, the lemma and corollaries below show the computation of Ψ

from Ψ1 and Ψ2.

Lemma 1.

n=n1+n2∑
i=1

AmBm =

n1∑
i=1

CmDm + n1∆
C
m∆

D
m +

n2∑
i=1

EmFm + n2∆
E
m∆

F
m

Proof.

Updated(

n1∑
i=1

CmDm) =

n1∑
i=1

[(r′(C) + β1(C))− (q′(C) +α1(C))] [(r′(D) + β1(D))− (q′(B) +α1(D))]

=

n1∑
i=1

[(r′(C)r′(D)− q′(C)q′(D)− r′(C)q′(D) + q′(C)r′(D)]

+

n1∑
i=1

[(β1(C)r′(D)−α1(C)r′(D)− β1(C)q′(D) +α1(C)q′(D)]

+

n1∑
i=1

[(r′(C)β1(D)− r′(C)α1(D)− q′(C)β1(D) + q′(C)α1(D)]

+

n1∑
i=1

[(β1(C)β1(D)−α1(C)β1(D)− β1(C)α1(D) +α1(C)α1(D)]

=

n1∑
i=1

CmDm +

n1∑
i=1

∆C
mDm +

n1∑
i=1

∆D
mCm +

n1∑
i=1

∆C
m∆

D
m

=

n1∑
i=1

CmDm +∆C
m

n1∑
i=1

Dm +∆D
m

n1∑
i=1

Cm + n1∆
C
m∆

D
m

=

n1∑
i=1

CmDm + n1∆
C
m∆

D
m (∵

n1∑
i=1

Cm =

n1∑
i=1

Dm = 0)

Similarly, we can show that Updated(

n2∑
i=1

EmFm) =

n2∑
i=1

EmFm + n2∆
E
m∆

F
m. Adding the two up-

dated statistics, the lemma above follows. ut

Corollary 1.

n=n1+n2∑
i=1

ApBp =

[
n1∑
i=1

CpDp + n1∆
C
p ∆

D
p

]
+

[
n2∑
i=1

EpFp + n2∆
E
p ∆

F
p

]

Corollary 2.

n=n1+n2∑
i=1

AmBp =

[
n1∑
i=1

CmDp + n1∆
C
m∆

D
p

]
+

[
n2∑
i=1

EmFp + n2∆
E
m∆

F
p

]

4.2 Updating sufficient statistics under a deletion operation

Let us consider the case where we want to find a superposition under a deletion operation. Let U ↔ V

and Q ⊂ U ↔ R ⊂ V denote two pairs of vector sets that are in correspondence. We want to compute

the superposition of the vector sets S = U \ Q and T = V \ R.
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Using the same notations as in the previous section, it is straightforward to rearrange Lemma 1

and Corollaries 1 and 2 to derive the sufficient statistics Ψ2 of the superposition of S with T using

the sufficient statistics Ψ (of U with V) and Ψ1 (of Q with R) as follows.

Corollary 3.

n2∑
i=1

EmFm =

n=n1+n2∑
i=1

AmBm −
n1∑
i=1

CmDm − n1∆C
m∆

D
m − n2∆E

m∆
F
m

Corollary 4.

n2∑
i=1

EpFp =

n=n1+n2∑
i=1

ApBp −
n1∑
i=1

CpDp − n1∆C
p ∆

D
p − n2∆E

p ∆
F
p

Corollary 5.

n2∑
i=1

EmFp =

n=n1+n2∑
i=1

AmBp −
n1∑
i=1

CmDp − n1∆C
m∆

D
p − n2∆E

m∆
F
p

5 Computing the r.m.s.d. from updated sufficient statistics, and other

optimizations

It is easy to see that Kearsley’s 4 × 4 symmetric quaternion matrix Q given in Equation 1 can be

constructed using the updated sufficient statistics derived from the constituent sufficient statistics of

previously superposed vector sets under addition and deletion operations in constant time.

In practice, Q is diagonalized and its eigenvalues and eigenvectors are computed using the numerical

approach of Jacobi, where rotations are applied to Q iteratively, where each rotation annihilates (that

is, sets to zero) a symmetric pair of off-diagonal entries in Q. This approach has a fast convergence

and the smallest diagonal element (or eigenvalue) is used to derive the r.m.s.d term, as described in

Section 2.

However, in some cases, for instance, when a current superposition is extended by just one corre-

spondence, Q changes marginally. Therefore, diagonalisation of Q can build on the previous solution.

Let Q denote the quaternion matrix corresponding to the superposition of corresponding vector sets

U and V. From the eigenvalue decomposition theorem, we have Q = SΛS−1, where S is the matrix of

eigenvectors and Λ is the diagonal matrix of eigenvalues. Also note that Q is a positive semidefinite

matrix with the property QTQ = QQT . This implies that all the eigenvectors are orthogonal to each

other. This further simplifies the decomposition to Q = SΛST . Also, since S is an orthogonal matrix,

Q = SΛST =⇒ Λ = STQS.

Now, assume that the corresponding vector sets are augmented from U and V to U ′ and V ′,

resulting in an updated Kearsley’s matrix Q′. We want to diagonalize this matrix into S′Λ′S′
T

.

Instead of starting the Jacobi’s iterative process from scratch, we will use the previously computed
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eigenvectors (before the vector sets were augmented), S, and compute Λ̃ as STQ′S. Notice that if

the augmentation does not include drastic changes, then Λ̃ is nearly diagonal (that is, Λ̃ ≈ Λ′),

thus requiring very few iterations to fully diagonalize Λ̃. This provides a further optimization to the

diagonalization step under update operations on vector sets.

6 Results

Source code

We wrote a C++ library that allows superposition of vector sets. Superpositions can be carried out

from scratch (using the raw coordinates), or, alternatively, using the sufficient statistics of constituent

vector sets, by operating on them using set addition or deletion operations. The source code is available

freely under a GNU public license from http://www.csse.monash.edu.au/~karun/superpose3D.

Consistency of superpositions using sufficient statistics

To validate the consistency of superpositions generated using sufficient statistics (under both addition

and deletion operations discussed in Section 4) we undertake the following experiment. 8992 ASTRAL

SCOP (Chandonia et al., 2004; Murzin et al., 1995) domains were used as the source structures from

which superposable fragments were randomly sampled. The general procedure of sampling is as follows.

From the list of source structures, randomly choose any structure. Within this structure choose 2

random fragments of lengths l1 and l2, where each fragment has between 10 and 40 residues. These

chosen fragments form the sets Q and S. Yet another structure is again chosen randomly from our

source list, and two fragments are randomly extracted from it with exactly the same length, l1 and

l2. These form the sets R and T . Assuming one-to-one correspondence between Q ↔ R we compute

the sufficient statistics Ψ1 of their orthogonal superposition. Similarly the sufficient statistics Ψ2 is

computed for the orthogonal superposition between S ↔ T . Define U = Q + S and V = R + T .

Iterating this random sampling 100 million times, we computed:

1. the r.m.s.d of superposition of U ↔ V from scratch (using the raw coordinates in the vector sets).

Denote this r.m.s.d as ρ1

2. the r.m.s.d of superposition of U ↔ V, but using the sufficient statistics Ψ1 and Ψ2 of superposi-

tions of constituent vector sets Q ↔ R, and S ↔ T . Denote this r.m.s.d as ρ2.
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We measure the difference between the two r.m.s.d values, ∆ρ = ρ1−ρ2. Over the 100 million samples,

the mean and standard deviation of ∆ρ was found to be zero to a very high precision (< 10−17).

We repeat the same experiment to validate superpositions under deletion operation using sufficient

statistics, where, in each iteration, we compute the superposition of vector sets S ↔ T , with S = U \Q

and T = V\R. This experiment again confirms the same consistency as observed in the test on addition

operation.

Measuring the performance gain using sufficient statistics for superpositions

We demonstrated in Section 4 that superpositions under addition and deletion can be updated in

constant time, building on the sufficient statistics of the constituent sets. This was also validated

empirically using the experiments above. We will now measure the gain in performance using this

approach by comparing it with superpositions built from scratch.

Figures 1(a)-(c) show the runtime plots of three sets of randomly chosen 10 million joint super-

positions carried out from scratch (Blue line) and compared against the same superpositions updated

using sufficient statistics (Green line). We note that these three sets vary in the (average) size of the

joint superpositions being carried out, as indicated in the plot titles. Fig. 1

Notice that, when joint superpositions are carried out from scratch ignoring the sufficient statistics,

the average size of the superpositions introduces a constant factor to the run time. This is expected as

each superposition is linear in the size of the vector sets being superposed. Consequently, the slopes of

those blue lines across the three plots in Figure 1 become steeper with the increase in the superposition

size. On the other hand, when the joint superpositions are updated in constant time, the updates are

independent of the superposition size. This is because, any update involves recomputing only a small

(fixed) number of sufficient statistics. This is clearly reflected in the slopes of the green lines being

unchanged across the three plots in Figure 1.

More formally, if |J | is the number of joint superpositions and l is the (average) number of vectors

being superposed, then the first method (Blue line in Figure 1) grows as O(l|J |). Since l � |J | we

see a linear trend (with a steeper gradient accounting for the multiplier l in the complexity term).

In comparison, the results with sufficient statistics (Green line in Figure 1) grow simply as O(|J |),

independent of the superposition size.
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Using sufficient statistics of superposition in the setting of structural alignments

As discussed in the introduction, a common heuristic employed to compute a structural alignment

between pairs of structures involves collecting a library of well-fitting fragments. This library is refined

by jointly superposing pairs from this library, and a final structural alignment is assembled from these

results.Table 1

To test the potential performance gain by using sufficient statistics, we computed the time taken

to undertake an exhaustive joint superposition on libraries of well-fitting fragments corresponding to

a small collection of structural pairs. For each pair of structures chosen, the well-fitting fragments are

identified as those that superpose maximally within an r.m.s.d threshold of 2 Å. By maximal, we mean

those fragment pairs that cannot be extended any further without violating the r.m.s.d. threshold.

Table 7 shows the run times of joint superpositions performed exhaustively on a small set of protein

structural pairs. As can be seen from the table, using sufficient statistics for superpositions results in up

to an order of magnitude improvement in the run time to carry our these superpositions exhaustively.

Since performing this task without sufficient statistics creates a computational bottleneck, existing

structural alignment programs attempt to drastically restrict the number of superpositions, often

trading off structural alignment quality for speed. We note that the improvements gained from using

sufficient statistics for superpositions will allow these restrictions to be generously relaxed without

any effect on the current run times, but potentially improving the structural alignment quality.

All the above experiments were carried out on a standard laptop with 2.2GHz Intelr CPU and

4GB RAM.

7 Conclusion

Optimal superpositions of vector sets are central to identify similarities and differences between spatial

objects. We derived a set of sufficient statistics for the orthogonal superposition problem under the

least squares criterion. These statistics provide an efficient way to operate (via addition and deletion

of vectors) on previously computed superpositions. Our results demonstrate a drastic improvement

in the computational effort required to compute r.m.s.d. based on sufficient statistics. These results

are relevant to many analyses involving structural data. These include the plethora of algorithms to

construct pairwise and multiple protein structural alignments by assembling fragment pairs. Source
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code (written in C++) to undertake superpositions implementing our work can be downloaded from

http://www.csse.monash.edu.au/~karun/superpose3D.
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Fig. 1. The CPU times (in seconds) performing joint superpositions from scratch (Blue line) compared against

the same using sufficient statistics (Green line) over 10 million random fragment data sets derived from

ASTRAL SCOP domains. The three plots vary in the average superposition size as indicated in the title.



⇑

Arun S. Konagurthu1,∗, Parthan

Kasarapu1, Lloyd Allison1, James H.

Collier1, Arthur M. Lesk2



List of Tables





Table 1. Time taken to perform exhaustive joint superpositions on a library of well-fitting fragment pairs

between two structures from different families.

Protein Family structural pair Number of joint Average size of Time in seconds Time in seconds

wwPDB IDs superpositions superpositions (from scratch) (sufficient stats)

Serine Proteinases 3EST vs. 2PKA 18,486,240 14 419.6 56.0

Calmodulin-like 1NCX vs. 2SAS 67,820,481 18 1618.4 178.2

Serine Proteinases 3EST vs. 2SNV 71,025,321 16 1328.0 187.8

Globins 1HHOA vs. 1HHOB 74,890,441 20 1923.3 194.6
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