
Statistical Inductive Inference of Protein Structural

Alignments

by

James Collier

Thesis

Submitted by James Collier

in fulfillment of the Requirements for the Degree of

Doctor of Philosophy

Supervisors:

Dr. Arun Konagurthu & Prof. Maria Garcia de la Banda

Clayton School of Information Technology

Monash University

September, 2016

Statistical Inductive Inference of Protein Structural
Alignments

Copyright © 2016 James Collier
Some Rights Reserved (see Appendix B)
Clayton School of Information Technology
Monash University
Australia

This thesis is required by the examinations office of Monash University to contain the following
copyright notices:
1. Under the Copyright Act 1968, this thesis must be used only under the normal conditions of
scholarly fair dealing. In particular no results or conclusions should be extracted from it, nor
should it be copied or closely paraphrased in whole or in part without the written consent of
the author. Proper written acknowledgement should be made for any assistance obtained from
this thesis.
2. I certify that I have made all reasonable efforts to secure copyright permissions for third-
party content included in this thesis and have not knowingly added copyright content to my
work without the owner’s permission.

This thesis was typeset with LATEX by the author using GNU Emacs and the AUCTEX macros.
LATEX is a collection of macros for TEX. TEX is a trademark of the American Mathematical
Society. The document class used in formatting this thesis was written by Glenn Maughan and
modified by Dean Thompson and David Squire of Monash University.

“Take the risk of thinking for yourself. Much more happiness,
truth, beauty, and wisdom will come to you that way.”

— Christopher Hitchens

Contents

List of Symbols & Abbreviations . vii

List of Tables . viii

List of Figures . ix

Abstract . xi

Publications . xiii

Acknowledgements . xiv

1 Introduction . 1
1.1 Inconsistencies in Protein Structural Alignment Algorithms 2
1.2 Aim of This Thesis . 3
1.3 Contributions Made by This Thesis . 3

1.3.1 Ancillary Contributions . 4
1.4 Summary . 5
1.5 Thesis Outline . 5

2 Introduction to Proteins and Alignments . 7
2.1 Introduction to Proteins . 8

2.1.1 Conceptual Hierarchy of Protein Structures 10
2.1.2 Protein Structure Databases and File Formats 10
2.1.3 Structure Determination and Prediction 12
2.1.4 Recurrent Substructural Themes and Classification 13
2.1.5 Geometric Constraints on the Protein Backbone Atoms 15
2.1.6 Topology of Proteins and Structural Plasticity 16

2.2 Alignment of Proteins . 17
2.2.1 Protein Structural Alignment . 19
2.2.2 Formulation of the Structural Alignment Problem 19
2.2.3 Protein Structural Superposition . 20
2.2.4 Internal Representations Used for Structural Alignment 25
2.2.5 Protein Structural Alignment Scoring Functions 27

2.3 Summary . 31

3 Introduction to Statistical Inference . 33
3.1 Definitions and Notations . 34
3.2 Probability, Information and Entropy . 35
3.3 Statistical Inference, Model Comparison and Selection 37

iv

3.3.1 Notations Supporting Statistical Inference 37
3.3.2 Statistical Estimators and Common Methods of Parameter Estimation . 38
3.3.3 Minimum Message Length Inference . 41

3.4 Codewords, Prefix-Free Codes and Universal Codes for Integers 49
3.5 Summary . 50

4 An MML Framework for Assessing Alignment Quality 51
4.1 Introduction . 52
4.2 Review of Popular Alignment Quality Measures 53
4.3 Structural Alignment as an Inductive Inference Problem 57

4.3.1 An Information Measure of Structural Alignment Quality 58
4.3.2 Statistical Properties of the Information Measure 59

4.4 Formulation of the Alignment Encoding Message Length: I(A) 61
4.4.1 Selecting an Alignment Encoding Scheme 64

4.5 Formulation of the Null Model Message Length: Inull(·) 64
4.5.1 Selecting a Null Encoding Scheme . 67

4.6 Formulation of the Coordinate Compression Model: I(T |S,A) 68
4.7 Handling Shifts and Rotations . 71
4.8 Results and Discussion . 72

4.8.1 Selection of Domains from the SCOP Database 73
4.8.2 Experiment 1: Benchmarking Against the SCOP Hierarchy 73
4.8.3 Experiment 2: Level of Disagreement Between Measures of Alignment

Quality . 77
4.9 Conclusions . 79

5 I-value: A Measure of Alignment Quality . 81
5.1 Introduction . 82
5.2 Improved Encoding Schemes for I-value . 83

5.2.1 Improvement to the Alignment Encoding Model: I(A) 83
5.2.2 Improved Estimation of the Null Model Message Length: Inull(·) 86
5.2.3 Improved Estimation of the Coordinate Compression Model: I(T |S,A) . 93

5.3 Results and Discussion . 98
5.4 Conclusions . 100

6 Searching for Pairwise Structural Alignments 103
6.1 Introduction . 104
6.2 Structural Alignment Search Methods . 104

6.2.1 Assembly of Well-Fitting Fragment-Pairs 105
6.2.2 Local Search Methods . 106
6.2.3 Search by Alternating Superposition and Alignment 108
6.2.4 Dynamic Programming Based Methods for Structural Alignment 109

6.3 Searching for Structural Alignments Using I-value 112
6.3.1 Dynamic Programming Using the I-value Measure 112
6.3.2 The MMLigner Algorithm . 116

6.4 Results and Discussion . 124
6.4.1 Identification of Alternate Structural Alignments 124
6.4.2 Performance of MMLigner on Hard Structural Alignment Cases 125
6.4.3 Large Scale Comparison on SCOP Domains with Varying Structural Dis-

tance . 128

v

6.5 Conclusions . 134

7 Ancillary Methods . 135
7.1 An Information Measure for Comparing Top k Lists 136

7.1.1 Information Measure for Comparing Ranked Lists 137
7.1.2 Realising the Information Measure in Practice 140
7.1.3 Results and Discussion . 144

7.2 Sufficient Statistics for Least-Squares Superposition 146
7.2.1 Introduction . 146
7.2.2 Summary of Least-Squares Superposition 147
7.2.3 Sufficient Statistics . 149
7.2.4 Updating Sufficient Statistics . 152
7.2.5 Computing the RMSD from Updated Sufficient Statistics 156
7.2.6 Results and Discussion . 156

7.3 Conclusions . 158

8 Conclusions and Future Directions . 161
8.1 Extensions to the Research Presented in this Thesis 163

8.1.1 Evaluating the Quality of Predicted Protein Structures 163
8.1.2 Improvements to the Encoding Models 163
8.1.3 Identifying Closely Competing Structural Alignments 164
8.1.4 Visualisations of Alignment Quality . 164

References . 171

Appendix A List of randomly selected SCOP heirarchy domains 189

Appendix B Creative Commons Attribution-NoDerivatives 4.0 International 193

vi

List of Symbols & Abbreviations

Pr(·) Probability

I(·) Shannon information content = − log(Pr(·))

Å Angstrom. 1Å = 1× 10−8 cm

DNA Deoxyribonucleic acid

EM Expectation Maximisation

FSA Finite State Automata

IQR Inter-Quartile Range

MML Minimum Message Length

PDB Protein Data Bank

PDF Probability Density Function

PoM Precision of measurement

PoPV Precision of Parameter Value

RMSD Root mean square deviation

SMML Strict Minimum Message Length

wwPDB World-wide Protein Data Bank

vii

List of Tables

2.1 Amino acids . 9
2.2 Protein structural alignment quality scoring functions 28

4.1 Adaptive First-Order Markov transmission example 64
4.2 Performance comparison of alignment programs on the SCOP hierarchy 77

6.1 Comparison between alignment programs on calcium binding domains 126
6.2 Performance of alignment programs on difficult to align structures 128
6.3 Performance comparison of alignment programs on the SCOP hierarchy 131

7.1 Time taken to perform exhaustive joint superpositions on a library of well-fitting
fragment pairs between two structures from different families. 158

viii

List of Figures

2.1 Amino acid chemical structure . 8
2.2 Conceptual hierarchy of protein structure . 11
2.3 wwPDB coordinate file formats . 12
2.4 Common supersecondary motifs . 15
2.5 Protein main-chain torsion angles . 16
2.6 Ramachandran-Ramakrishnan-Sasisekharan plot 17
2.7 A Topology of Protein Structure diagram . 18
2.8 An example hinge rotation . 18
2.9 A pairwise protein structural alignment . 20
2.10 Tessellated Representation of Protein Structure 26
2.11 Example tableau representation for a protein structure 27

4.1 Alignment Finite State Automata . 61
4.2 The three-state automata used for alignment encoding 63
4.3 Comparison of alignment encoding schemes . 65
4.4 Transmitting a coordinate on the surface of a discretised sphere 67
4.5 Comparison of null model encoding schemes . 68
4.6 Adaptive superposition . 69
4.7 Example of an alignment between structures containing a hinge rotation 71
4.8 Evaluation of scores using SCOP hierarchy . 75
4.9 Evaluation of scores using SCOP hierarchy (continued) 76
4.10 Levels of agreement between structural alignment scoring functions 78

5.1 A three-state automata used for alignment encoding 84
5.2 Illustration of an alignment with long terminal gaps 84
5.3 Comparison of alignment encoding schemes . 86
5.4 Acidity data containing 155 real valued data points. 87
5.5 Fidelity of mixture models . 89
5.6 Measuring the canonical direction of any Cα atom 90
5.7 Performance of improved null model encoding 92
5.8 Global coordinate compression model example 94
5.9 Posterior reweighting of mixtures of directional distributions 96
5.10 Improvement in message length for the R-model 99

6.1 Alignment quality landscape visualisation . 115
6.2 Phases of the MMLigner algorithm . 118
6.3 Alternative MMLigner alignments for the SCOP domains d2sasa and d1jfja . 127
6.4 Large scale benchmarking of MMLigner on SCOP data 129
6.5 Evaluation of alignment programs using the SCOP hierarchy 132

ix

6.6 Evaluation of alignment programs using the SCOP hierarchy (continued) 133

7.1 Examples of the adaptive encoding schemes for bit masks described in the main
text. 142

7.2 Translation table for factoradic numbers . 143
7.3 Variation of costs over the set of all permutations 144
7.4 Comparison between distance measures on movie rankings 145
7.5 Comparison between distance measures on search engine results 145
7.6 Runtimes for joint superpositions . 157

8.1 Landscape for wwPDB 1HHO-A vs. wwPDB 1MBD 165
8.2 Landscape for wwPDB 3CHY vs. wwPDB 5NLL 166
8.3 Landscape for wwPDB 1PHN vs. wwPDB 1MBD 167
8.4 Landscape for wwPDB 1EUD-A vs. wwPDB 1CCW-A 168
8.5 Landscape for wwPDB 1JFJ-A vs. wwPDB 2SAS-A 169

x

Statistical Inductive Inference of Protein Structural
Alignments

James Collier
Monash University, 2016

Supervisors:
Dr. Arun Konagurthu & Prof. Maria Garcia de la Banda

Abstract

Proteins are complex biological molecules that perform a vast array of functions crucial to life.
A small set of computational tasks underpin the study of proteins. One of these supports the
comparison of proteins using the notion of alignment. An alignment between proteins allows
biologists to understand their evolutionary relationship. Due to the functional constraints
that exist on protein biomolecules, finding reliable alignments requires the comparison of their
three-dimensional structures (rather than their sequences). The resulting alignments are called
protein structural alignments (rather than sequence alignments). The quality of alignments has
important consequences for research in protein biology, as they are the foundation for many
aspects of protein research.

The problem of finding reliable structural alignments is commonly posed as a combinatorial
optimisation problem, which requires an optimisation strategy (a search method to find the best
alignments) and an objective function (a measure of alignment quality). The objective function
must arbitrate a trade-off between the structural fidelity of the proteins being aligned, and the
complexity of the alignment itself. The alignment search algorithm then finds the alignment
that the scoring function considers optimal. Over the past five decades, many alignment meth-
ods have been conceived to identify structural alignments between proteins. Concerningly, the
alignments obtained by these methods differ substantially and often produce contradictory re-
sults. Many comparative studies on methods generating structural alignments have highlighted
the absence of a clear consensus on what constitutes a good structural alignment and the lack
of a statistically rigorous measure of alignment quality. This has been stated as a leading cause
of the observed proliferation of new structural alignment methods, which tend to perform small
modifications to previous approaches.

This thesis proposes a fundamental shift in the way structural alignment quality is formalised
and measured, and in the way biologically-meaningful alignments are identified. It brings to-
gether ideas from fields of information theory, data compression, and statistical inductive in-
ference to develop a statistically rigorous framework to measure structural alignment quality.
The resulting alignment quality measure, called I-value, is built on the Bayesian framework
of minimum message length inference. Furthermore, this thesis develops a search algorithm
that employs I-value to consistently identify high quality and statistically significant structural
alignments. This search method is also able to identify significant alternative structural align-
ments of comparable quality. The culmination of this work is an open-source pairwise structural
alignment program called MMLigner (available from http://lcb.infotech.monash.edu.au/

mmligner). The performance of MMLigner is benchmarked against popular alignment programs
and alignment scoring functions. MMLigner results were found to be highly-competitive com-
pared to other methods, and consistently outperforms other methods in identifying alternative
structural alignments, a challenging problem when aligning oligomeric proteins and protein
complexes.

xi

Statistical Inductive Inference of Protein Structural

Alignments

Declaration

This thesis contains no material which has been accepted for the award of any other degree
or diploma at any university or equivalent institution and that, to the best of my knowledge
and belief, this thesis contains no material previously published or written by another person,
except where due reference is made in the text of the thesis.

James Collier
September 19, 2016

xii

Publications

Manuscripts in communication:

� James H. Collier, Lloyd Allison, Arthur M. Lesk, Peter J. Stuckey, Maria Garcia de la

Banda, & Arun S. Konagurthu. Statistical Inference of Protein Structural Alignments. In

communication (Preprint available at URL: http://biorxiv.org/content/early/

2016/06/02/056598).

Accepted manuscripts:

� James H. Collier, Lloyd Allison, Arthur M. Lesk, Maria Garcia de la Banda, Arun S.

Konagurthu (2014), A new statistical framework to assess structural alignment quality

using information compression. Bioinformatics. 30(17):i512–i518.

(Presented at the 13th Annual European Conference on Computational Biology (ECCB

2014), September 7-10 2014, Strasbourg, France.)

� Arun S. Konagurthu, Parthan Kasarapu, Lloyd Allison, James H. Collier, and Arthur

M. Lesk (2015), On Sufficient Statistics of Least-Squares Superposition of Vector Sets.

Journal of Computational Biology. 22(6):487–497.

� James H. Collier, Arun S. Konagurthu (2014), An information measure for comparing

top k lists. In IEEE 10th International Conference on eScience. pp. 127–134.

xiii

Acknowledgements

My sincere and heartfelt thanks go to my advisers Dr. Arun Konagurthu and Prof. Maria

Garcia de la Banda. They are inspirational people and I hope that, one day, I am able to live

up to the high standards they set. From them I have learned how little I know, but they have

instilled in me a confidence and a sense of excitement to explore the unknown. I consider myself

extraordinarily lucky to have been given a chance to learn and develop under their careful and

patient guidance.

I interacted with Arun almost on a daily basis. He is filled with an enthusiasm for, and

joy in science and mathematics. From the day I met him, his enthusiasm has been infectious.

He inspires in me a desire to learn more about whichever of the broad subjects we often find

ourselves discussing. His deep understanding of a diverse range of fields has been a constant

and indispensable aid to my completing this candidature. The kindness and dignity with which

he treats students and his honest approach to the research effort are principles that I have

taken to heart.

Maria is a truly amazing person. While juggling a busy schedule and life as a mother,

researcher, and faculty dean she never once missed (or was even late) to a meeting or a chance

to guide me in the right direction. She always gave insightful feedback on any issue I was

having, no matter how badly I described it to her. The attention to detail that she has while

constantly keeping the big picture in mind is splendid and has ensured I stayed on track.

I also sincerely thank Lloyd Allison for his insights regarding the mathematics, Arthur Lesk

from which much of my biological understanding stems, and Peter Stuckey all of whom were

extraordinarily helpful. Much of my progress would not have been possible without them.

Furthermore, my sincere thanks go to Parthan Kasarapu, who sat with me throughout this

candidature, often ‘lent me his ear’ and is a source of great mathematical prowess.

I am grateful to the Australian Government, as representatives of the Australian people, for

their generous funding under the Australian Postgraduate Award (APA) scholarship. Further-

more, I wish to acknowledge Monash University and NICTA for additional funding provided.

NICTA is funded by the Australian Government through the Department of Communications

and the Australian Research Council through the ICT Centre of Excellence Program. Lastly,

thanks go to the Victorian Life Sciences Computation Initiative (VLSCI) for the generous travel

funding they provided.

A very special thanks goes to the lovely and delightful Nicole Alers who has been my rock

through many of the trials of this candidature, you have a special place in my heart. My

dear parents who’ve lent their unwavering support for me, I cannot thank you enough. My

sincere thanks go to James Morgan and Yen Pham Morgan for their extraordinary support

and willingness to put up with me. My dear friend Gopika Krishnamurthy deserves very

xiv

special thanks for her encouragement, optimism and kindness. I owe a great debt of gratitude

to Ehsan Shareghi, Kai Siong Yow, Xuhui Zang, Daniel Bishop, Marion Fumaroli, Meaghan

Bruce, Benjamin Lambell, Andrew Read, Shannon Scullin, Michael Eichmair, and many others

who have helped and inspired me, in various ways throughout this amazing journey. Each of

you have my deepest, most profound and sincere thanks. Without each and every one of you,

this thesis would not have come to fruition.

James Collier

Monash University
September 2016

xv

xvi

Chapter 1

Introduction

P
roteins are large, complex biological molecules that are crucial to all forms of life. They
perform a vast range of different functions, which include serving as catalysts of biochem-

ical reactions, translating genetic information into other macromolecular forms, transporting
molecular payloads, and acting as storage mechanisms for the essential chemical ingredients of
life (Lesk, 2010).

Over the last seventy years, experimental techniques have emerged that allow researchers
to accurately determine the underlying amino acid sequence and the three-dimensional (3D)
structure of proteins. These experimental techniques have given rise to some of the most promi-
nent data streams in all of molecular biology. The direct result of these experimental advances
is the rapid growth of publicly available protein sequence (Universal Protein Resource: Uniprot
(2010)) and structure (Worldwide Protein Data Bank: Berman et al. (2002)) databases. The
computational analysis of this protein data has become invaluable for biological research.

A critical computational task in protein biology is the comparison of protein sequence and
structure using a concept known as alignment. Specifically, an alignment is an assignment of
one-to-one correspondences between a subset of the amino acid residues in two or more pro-
teins. Proteins evolve continuously, subject to strong functional constraints (Lesk, 2001a), and
the correspondences assigned by alignments are used to establish an evolutionary relationship
(homology) between the proteins under comparison. In particular, an alignment is used to
answer two specific questions: Are two proteins related? And, if so, how? The identification
of this relationship provides a basis for estimating the evolutionary distances between proteins,
and for discovering how proteins have evolved (diverged) from a common ancestor, in some
cases, over millions of years.

Alignments can be computed using the protein’s amino acid sequence information or using
its 3D structure (or a combination of both). However, protein structures change more conser-
vatively than their sequences during evolution. Therefore, the structural alignment of proteins
offers a more accurate basis to establish homology, and is capable of establishing homology
even for very distantly related proteins (Chothia and Lesk, 1986).

The quality of alignments between proteins has important consequences for research in
molecular biology. For example, without high quality alignments, the characterisation of im-
portant biological processes such as ligand binding would be far more difficult (Marti-Renom
et al., 2009). In many cases, protein structural alignments alone are used for automatic hier-
archical classification of the known protein fold space. In these cases, high quality alignments
are essential for the classification to be useful (Holm et al., 1992; Orengo et al., 1997). As a
protein’s structure is so intricately tied to its function, high quality structural alignments per-
mit the inference of function from the protein structure (Godzik et al., 2007). Furthermore, it

1

2 CHAPTER 1. INTRODUCTION

has been suggested that the prediction of protein structure from sequence is limited mainly by
errors in alignments (Zhang and Skolnick, 2005a). And importantly, the experimental solution
of protein crystal structure by molecular replacement also depends on high quality structural
alignments (Konagurthu et al., 2006).

1.1 Inconsistencies in Protein Structural Alignment Al-

gorithms

Finding a high quality structural alignment for two or more proteins can be considered as
an optimisation problem requiring a measure of quality to assess any proposed alignment,
and a search method to find an optimal alignment under the stated quality measure. Over
the past five decades, many computational methods have been proposed to identify protein
structural alignments, with the number of such new structural alignment methods doubling
roughly every five years (Hasegawa and Holm, 2009). These methods differ mainly in how
they assess the quality of an alignment. Concerningly, several studies have shown that the
alignments obtained by these methods differ substantially (Kolodny et al., 2005; Sippl and
Wiederstein, 2008; Hasegawa and Holm, 2009; Slater et al., 2013; Ma and Wang, 2014). In a
recent review, Liisa Holm (Hasegawa and Holm, 2009), a leading researcher in the field, and
author of DALI (Holm and Sander, 1993), a widely-used structural alignment program, writes:

“A variety of methods use different representations, scoring functions, and opti-
mization algorithms, and they generate contradictory results even for moderately
distant structures.”

Manfred Sippl (Slater et al., 2013), another leading expert in the field, comments,

“Lacking a clear definition of what constitutes an optimal alignment, structural
bioinformatics has created an ever growing arsenal of computer programs, all ded-
icated to solve one and the same problem, where each program provides its own
numerical criteria and scores to describe the quality of the alignments obtained.
From a user’s point of view the situation is most confusing. Research on protein
structure requires structure alignment tools but it is unclear which programs pro-
duce the most valuable results and how the results obtained have to be interpreted.
Obviously some effort for standardization is required.”

The above comments highlight a severe disconnect between the rapidly growing number of
methods and the quality of the structural alignments they generate. This disconnect is due to
a complete lack of consensus on how to measure structural alignment quality. To resolve this, it
is necessary to define a rigorous measure of alignment quality that can objectively discriminate
between competing alignments. Without this, the notion of best (or optimal) alignment can
neither be rigorously defined nor searched for (Hasegawa and Holm, 2009).

The absence of such a rigorous measure has fueled the proliferation of methods based on ad
hoc scoring functions. Further, the search algorithms used by existing methods are typically
based on greedy heuristics and, thus, often return alignments that are far from optimal, regard-
less of the chosen scoring function (Konagurthu et al., 2006). Finally, current methods do not
provide any framework to meaningfully capture similarities and differences between competing
alignments, as they often generate a single alignment result, while ignoring a multitude of other
closely-competing alignments. New methods are therefore needed to meaningfully explore the

1.2. AIM OF THIS THESIS 3

entire landscape of competing alignments so that biologically interesting relationships are not
overlooked.

The traditional approach of formulating an ad hoc scoring function from key alignment
quality criteria has been extensively explored over the last four decades. Further development
along the same lines is unlikely to provide any major breakthrough. Therefore, the field of struc-
tural alignment will stand to benefit by departing from traditional approaches and exploring
radically new ones.

1.2 Aim of This Thesis

This thesis aims not merely to tinker along the methodological lines followed by previous at-
tempts, but rather, it aspires to fundamentally shift the way structural alignment quality is
formalised and measured, and the way in which biologically-meaningful alignments are identi-
fied. This involves achieving the following objectives:

� Use information theory to develop a framework to measure structural alignment quality
with statistical properties that provide rigorous evaluation of alignments, objective dif-
ferentiation between competing alignments, and a robust test of alignment significance.

� Design a search algorithm capable of consistently identifying high quality, statistically
significant structural alignments using the above measure of quality.

� Be able to identify considerably different, competing alternative alignments that are sta-
tistically significant and should not be overlooked.

1.3 Contributions Made by This Thesis

The first major contribution of this thesis is the development of the I-value measure to assess
pairwise structural alignment quality. I-value treats a structural alignment as a hypothesis of
the structural relationship between two proteins, expressed as a one-to-one, order-preserving,
correspondence between subsets of residues. Specifically, each alignment hypothesis is seen as
an attempt to explain the coordinate data of the pair of proteins. The explanatory power
of each alignment is then quantified, using principles of information theory, as the amount
of lossless compression obtained from encoding the coordinate data of the proteins using the
knowledge of the correspondences provided by the alignment (as compared to encoding the
coordinate data without that knowledge). In this context, I-value can be thought of as a
communication process between an imaginary transmitter-receiver pair. The quality of any
structural alignment is measured by I-value as the message length required to encode and
transmit the protein coordinate data using the alignment hypothesis. The shorter the length
of the message, the better the alignment. This measure is backed by mathematical rigour and
exhibits important statistical properties, including a natural null hypothesis test for assessing
the statistical significance of any proposed alignment. The accuracy of I-value depends largely
on the specific statistical models of encoding that are used. The development of these encoding
schemes represent one of the most complex aspects of this research, and led to an initial set of
encoding models, which are described and quantitatively compared in Chapter 4.

In Chapter 5, systematic improvements to the set of statistical models used for coordinate
encoding (over the ones used in Chapter 4) are described. These improved encoding schemes
build on the statistical models of protein directional data developed by Kasarapu and Allison

4 CHAPTER 1. INTRODUCTION

(2015). These directional models form the basis of a sophisticated technique to define the
relative position and local geometric context of corresponding residues and use this to compress
the coordinate data more concisely. This leads to the final implementation of I-value as achieved
in this thesis. This implementation can accurately discriminate between closely competing
alignments, and can consistently distinguish homologous structures from unrelated structures.

The second major contribution of this thesis is a method to search for high quality alignments
of a pair of protein structures, using I-value as the objective for which to optimise. The search
for the optimal alignment is an inherently complex problem, which is usually (except in the
simplest of cases) solved by heuristic, rather than by complete search methods as it cannot be
solved exactly. Several attempts were made at defining a robust search algorithm to optimise
alignments using I-value. Early attempts gave rise to a promising method for visualising the
entire quality landscape of competing alignments between a pair of structures, which can be
seen as a natural development of the dot plot from the field of sequence alignment*. The
final search algorithm developed in this thesis, called MMLigner, is able to reliably find high
quality alignments that achieve significant compression using I-value. MMLigner is also able
to consistently find a distinct set of statistically significant alternative alignments between the
structure pairs, when they exist. This is useful, for example, when aligning multi-domain
proteins where a plausible alignment exists for each domain. This gives molecular biologists a
powerful tool to examine multiple plausible structural relationships between a pair of proteins,
where previous tools often give only a single optimal alignment (see Chapter 6).

1.3.1 Ancillary Contributions

Two other contributions arise from this thesis (described in Chapter 7) providing methodolog-
ical support to the primary contributions described above. The first one is a highly efficient
numerical method to compute least-squares, rigid-body superposition of vector sets using the
notion of sufficient statistics. This work derives a set of sufficient statistics for the superposition
problem and demonstrates that they possess the crucial property of additivity. This permits a
constant time computation of superpositions of vector sets (and their sufficient statistics) when
the superpositions of (partial) constituent vector sets are already known, under set addition
and symmetric difference operations. This contribution forms the work-horse for generating
seed alignments in the final MMLigner algorithm (see Chapter 6).

The other ancillary contribution of this thesis is a method to gauge the disorder be-
tween ranked, top-k lists. This is traditionally calculated using methods such as the Kendall
τ (Kendall, 1938) or Spearman’s ρ (Spearman, 1904) rank correlation coefficients or modified
versions of these measures (Fagin et al., 2003). The new method presented in this thesis ap-
plies information theory (Wallace and Freeman, 1987) to this problem in a similar manner to
its application to the alignment problem by I-value. In this instance, one top-k list is used
to describe the other, and any differences increase the length of the message. Therefore, two
identical lists will require only a short message, whereas, two lists with nothing in common
will require a much longer message. This method is, in turn, used to evaluate the degree of
agreement between popular measures of structural alignment quality (see Chapter 4).

*Developing this technique further is left to future work.

1.4. SUMMARY 5

1.4 Summary

This thesis addresses the protein structural alignment problem by radically departing from the
traditional methods of formulating structural alignment scoring functions and finding optimal
alignment based on those scoring functions. This is achieved by defining I-value, a structural
alignment quality assessment measure with foundations in sound statistical techniques. I-value
possesses several useful properties:

1. It achieves an objective, formal trade-off between the complexity of an alignment, and
the fidelity between the structures defined by that alignment.

2. Alignments can be directly compared using their I-values, and the difference between the
I-values for two competing alignments gives their log-odds posterior ratio.

3. I-value provides a natural null hypothesis test for statistical significance. An alignment
that fails this test can be rejected.

4. I-value is not defined in terms of ad hoc parameters or arbitrary constants.

Furthermore, it goes on to develop and describe MMLigner, a search algorithm that uses
I-value to optimise a set of distinct structural alignments. Both I-value and MMLigner perform
highly competitively when benchmarked against state-of-the-art structural alignment meth-
ods. The MMLigner algorithm is able to consistently identify a range of significant alternative
structural alignments, avoids pairing up spurious correspondences. The structural alignments
identified by MMLigner are highly competitive according to popular measures of structural align-
ment quality and often succeeds where other alignment programs do not identify any alternative
alignments.

1.5 Thesis Outline

The structure of this thesis is as follows:
Chapter 2 provides the biological background necessary for understanding the concepts

used throughout this thesis. In particular, it introduces proteins and protein structure, how
protein structural data is stored and organised, and how protein structural comparison is per-
formed using protein alignments. The alignment problem is introduced and discussed in terms
of three major tasks: representation, scoring, and search. Finally, this chapter reviews repre-
sentations and scoring functions commonly used by protein structural alignment methods.

Chapter 3 introduces the basics of statistical inference by linking the notions of probability
and information. It explores statistical inductive inference by minimum message length (MML)
in depth and the practical Wallace-Freeman approximation. Notions of prefix codes and the
universal code for positive integers are also briefly introduced here.

Chapter 4 designs and develops the MML based framework for the assessment of protein
structural alignment quality. It explores the trade-off between notions of coverage and fidelity,
which are made by state-of-the-art alignment quality measures. A rigorous method for making
this trade-off is proposed. This chapter then deals with the details of the encoding schemes
required to realise the information measure in practise. Finally, this framework of alignment
quality is benchmarked over a large set of domain pairs. The quantitative comparison of align-
ment rankings between popular structural alignment scoring functions highlights the degree of
disagreement between structural alignment scoring functions.

6 CHAPTER 1. INTRODUCTION

Chapter 5 introduces systematic improvements to the encoding schemes proposed in Chap-
ter 4. Notions of mixture modelling and directional probability distributions are introduced in
this chapter and used to construct sophisticated coordinate encoding methods. Quantitative
comparisons are carried out between these encoding methods to demonstrate the achieved im-
provement. The encoding schemes developed in this chapter form the definition of the I-value
measure of protein structural alignment quality as achieved during this candidature.

Chapter 6 deals with methods to search for protein structural alignments by consider-
ing the alignment problem as a combinatorial optimisation problem. Common algorithms to
search for structural alignments are explored in detail. The development of methods to search
for alignments using I-value is reviewed and a method to generate an interactive 3D landscape
visualisation of alignment quality is introduced. This chapter culminates in the development
of the MMLigner program, which identifies high quality and statistically significant structural
alignments using the I-value alignment quality measure. The MMLigner program is bench-
marked against popular state-of-the-art structural alignment programs and found to be highly
competitive.

Chapter 7 discusses the ancillary methodological contributions supporting the work in this
thesis as applied to the work within the earlier chapters. Firstly, an information measure for
comparing top-k ranked lists in a similar vein to the I-value comparison of protein structures.
This method uses MML to provide an objective trade-off between criteria that measure the dis-
similarity between ranked lists, addressing pitfalls in the existing measures. Secondly, a method
to rapidly compute joint superpositions in O(1) time is described. This method provides a
set of sufficient statistics for the least-squares superposition problem under the least squares
criterion. The results in this chapter demonstrate a drastic improvement in the computational
effort required to compute least-squares superpositions.

Chapter 8 concludes the thesis by outlining the key results of the research. Future research
directions are explored and discussed that arise naturally from the research presented in this
thesis. These future research directions include using MMLigner and I-value to assess entries
to the CASP protein structure prediction competition; specific improvements to the encoding
models presented in Chapter 5; and three-dimensional interactive visualisation of the landscape
of competing alignments.

Chapter 2

Introduction to Proteins and
Alignments

“In the drama of life on the molecular scale, proteins are where the
action is.”

— A. M. Lesk (2001a)

The research presented in this thesis applies areas of computational science, information
theory and statistics to address a biological problem. This chapter introduces the general
biological background required for this research. In particular it introduces proteins and
their molecular and structural constitution. It also summarises the general principles and
concepts related to protein structure and architecture. Furthermore, it explores how protein
structures are compared, and introduces the problem of structural comparison by alignment.
The biological definitions and elements presented in this chapter supports the research and
discussion presented in subsequent chapters.

7

8 CHAPTER 2. INTRODUCTION TO PROTEINS AND ALIGNMENTS

2.1 Introduction to Proteins

P
roteins are long polymer chains made up by amino acid residues.* There are twenty nat-
urally occurring amino acid molecules. Each amino acid is composed of an identical set of

main-chain atoms: a nitrogen (N) atom which is part of the amine group, a central carbon
(Cα) atom, and another (carbonyl) carbon atom which is part of the carboxylic group. The
chemical structure of an amino acid is shown in Figure 2.1(a). The twenty amino acids are
differentiated by the side-chain attached to their central carbon atom. A portion of the protein
main-chain and side-chain of two successive amino acids is shown in Figure 2.1(b). Each amino
acid is uniquely identified by a one-letter code and also a corresponding three-letter code. Refer
to Table 2.1 for the complete list of the naturally occurring amino acids, together with their
one- and three-letter codes, and chemical structures.

(a) (b)

Figure 2.1: The chemical makeup of a protein 3D structure showing the main chain atoms
common to all amino acids a N (nitrogen) atom, a Cα (central carbon) atom, and a (carbonyl)
carbon atom. (a) The composition of a generic amino acid with its main-chain highlighted.
Within the main chain the separate functional amine-, and carboxylic (acid)-groups are also
highlighted. (b) A portion of the protein structure containing two bonded amino acid molecules.
For each amino acid shown, their side chain atoms, bonded to the Cα atom, are also shown in
transparency.

A protein is composed of one or more linear chains (sequence) of amino acids.� A single
protein chain is typically several hundred residues long. The DNA (deoxyribonucleic acid) in
each cell of an organism provides the blueprint containing instructions for the construction
of its proteins (Crick, 1970). Once the DNA code is translated into a linear chain of amino
acid residues, this chain spontaneously folds� through a combination of physical and chemical
processes, into a precise three-dimensional (3D) shape (also known as structure, or conforma-
tion) (Anfinsen, 1973; Hartl, 1996; Ellis, 2006). The 3D structure of a protein facilitates its
biological function (Scheeff and Fink, 2005).

*In protein chemistry, a residue refers to a specific monomer (amino acid) within the protein chain. This
thesis will use the terms ‘residue’, ‘amino acid’, and ‘amino acid residue’ interchangeably.

�For a protein involving multiple chains of amino acids, each chain accounts for a part of the overall protein
molecule.

�Many factors affect protein folding including the environment and the presence of molecular “chaperones”
that guide the protein to the correct conformation.

2.1. INTRODUCTION TO PROTEINS 9

Table 2.1: Amino acids with their abbreviated names and chemical structures. Amino acid side
chains appear in blue.

Amino acid
3-letter
code

1-letter
code

Chemical
Struc-
ture

Amino acid
3-letter
code

1-letter
code

Chemical
Struc-
ture

Alanine Ala A C C
O

O−
N+H3

CH3

H

Methionine Met M

C C
O

O−
N+H3

H

CH2

CH2

S

CH3

Cysteine Cys C
C C

O

O−
N+H3

H

CH2

SH

Asparagine Asn N
C C

O

O−
N+H3

H

CH2

C

H2N O

Aspartic Acid Asp D
C C

O

O−
N+H3

H

CH2

C

O− O

Proline Pro P
H

C C

O

O−

CH2

H2
C

H2C
+

NH2

Glutamic Acid Glu E

C C
O

O−
N+H3

H

CH2

CH2

C

O− O

Glutamine Gln Q

C C
O

O−
N+H3

H

CH2

CH2

C

H2N O

Phenylalanine Phe F

C C
O

O−
N+H3

H

CH2
Arginine Arg R

C C
O

O−
N+H3

H

CH2

CH2

CH2

NH

C

NH2

NH+
2

Glycine Gly G C C
O

O−
N+H3

H

H

Serine Ser S
C C

O

O−
N+H3

H

CH2

OH

Histidine His H
H3

+

N C

H

CH2

NH

+H
N

C

O

O−

Threonine Thr T
C C

O

O−
N+H3

H

CH2

CH

HO CH3

Isoleucine Ile I
C C

O

O−
N+H3

H

CH

CH2

CH3

CH3 Valine Val V
C C

O

O−
N+H3

CH

H3C CH3

H

Lysine Lys K

C C
O

O−
N+H3

H

CH2

CH2

CH2

CH2

NH+
3

Tryptophan Trp W

C C
O

O−
N+H3

H

CH2

H
N

Leucine Leu L
C C

O

O−
N+H3

H

CH2

CH

H3C CH3

Tyrosine Tyr Y

C C
O

O−
N+H3

H

CH2

OH

10 CHAPTER 2. INTRODUCTION TO PROTEINS AND ALIGNMENTS

2.1.1 Conceptual Hierarchy of Protein Structures

Traditionally, the structure of proteins is considered within a conceptual hierarchy of represen-
tations: primary, secondary, tertiary and quaternary structure (Linderstrøm-Lang, 1952). The
linear chain of amino acids can be represented as a sequence of one-letter codes (see Table 2.1).
This sequence of one-letter codes is referred to as the primary structure of a protein, the first
level of this hierarchy. See Figure 2.2(a) for an example of the primary structure. In this thesis,
the terms sequence and primary structure are used interchangeably to mean the linear sequence
of amino acids.

The second level of the hierarchy consists of the representation of the 3D structure of proteins
at the level of standard secondary structures consisting of helices and strands of sheet§ (Pauling
and Corey, 1951; Pauling et al., 1951). Secondary structures form local structural segments
within the global 3D structure of a protein. Secondary structures arise due to periodic hydrogen
bonding patterns between pairs of amino acids, involving amine and carboxylic groups (Kabsch
and Sander, 1983; Andersen and Rost, 2009). An example of a protein chain, decomposed into
a representation of the local secondary structures elements appears in Figure 2.2(b): helices are
coloured in red, while strands are abstracted as yellow arrows pointing towards the C-terminus
of the secondary structural region. The green linkers are the remaining (unstructured) parts of
the protein chain, termed here as coils.

Tertiary structure is the third level of the conceptual hierarchy, where a protein is repre-
sented using the details of its 3D atomic coordinates. While structures represented at this
level appear very complex, the 3D shape of a tertiary structure is rather simple when consid-
ering only its backbone. The backbone of any protein refers to the sequence of the following
main-chain atoms: N-Cα-C-N-Cα-C-N-Cα-C-· · · -N-Cα-C. The backbone begins with a nitrogen
atom (called the amine- or N-terminal of the protein) and ends with a (carbonyl) carbon atom
(called the carboxy- or C-terminal of the protein). Figure 2.2(c) shows an example of tertiary
structure overlaid on its secondary structure.

The fourth and final level of the hierarchy refers to quaternary structures, which contains
a number of tertiary structures (folded into protein subunits) assembled into a multi-subunit
complex. An example of quaternary structure is shown in Figure 2.2(d), where each subunit is
coloured differently.

2.1.2 Protein Structure Databases and File Formats

Structure databases underpin almost all research efforts in computational protein structural bi-
ology. Publicly available databases collect experimentally determined 3D structures of proteins
deposited by protein biochemists and crystallographers from the world over. The central global
repository for protein structural data is the Worldwide Protein Data Bank (wwPDB; Berman
et al. (2003); http://www.wwpdb.org). The entire wwPDB database is freely accessible via the
websites of partner organizations, spread across the globe, mainly: The Research Collaboratory
for Structural Bioinformatics (RCSB; Berman et al. (2000); http://www.rcsb.org, located in
the USA), PDBe (Velankar et al. (2011); http://www.pdbe.org, a european resource), and
PDBj (Kinjo et al. (2012); http://www.pdbj.org, from Japan). As of the 10th of May 2016,
the wwPDB contains entries for 110, 135 protein structures. A breakdown of the proportions of
protein structures determined using various experimental methods can be found at the URL:
http://www.rcsb.org/pdb/statistics/holdings.do.

§A sheet is formed from several interconnected (anti-)parallel strands that appear as an, often twisted,
pleated sheet.

2.1. INTRODUCTION TO PROTEINS 11

(a) (b)

(c) (d)

Figure 2.2: A protein structure (wwPDB 1CCW) represented by: (a) primary structure, (b)
secondary structure, (c) tertiary structure, and (d) quaternary structure. Primary sequence
one-letter codes are coloured according to the secondary structural element they belong to.
Secondary helical regions are coloured in red, strand regions are coloured in yellow, and un-
structured or coil regions are shown in green. The tertiary structure, overlaid by the secondary
structural representation, is shown as a trace of the main-chain and side-chain atoms represented
by “sticks”. The quaternary structure is shown using the secondary structure representation
for each of its four subunits, where each subunit is coloured differently.

The data for each structure in the wwPDB contains atomic-level 3D (x, y, z) coordinate
information, including the details of the experimental process used to determine the structure.
Coordinate data from the wwPDB is available in several computer readable formats, including
the comprehensive macro-molecular Crystallographic Information File (mmCIF; Bourne et al.
(1997)) format from which the other formats are converted, the Brookhaven PDB format (for
an example, see Figure 2.3(a); Bernstein et al. (1977)), and the PDBML (an XML format, an
example is shown in see Figure 2.3(b); Westbrook et al. (2005)) (Westbrook and Fitzgerald,
2009). Coordinate data is presented in Angstrom (Å) units, where 1Å is equal to 1× 10−10 m.

Every structural entry in the wwPDB has a 4-character unique identifier that is used to
retrieve its coordinates. These identifiers are often used throughout the scientific literature
(and this thesis) to refer to specific protein structures. For example the structure displayed in
Figure 2.2 has the wwPDB identifier: 1CCW. Since a protein may contain multiple chains, each
chain is given a single letter identifier (or chain identifier) usually starting from the uppercase
letter ‘A’. For example, the protein chain that appears in Figure 2.2(c) is the first chain, with
the chain identifier of A, from the structure of coenzyme B12 dependant Glutamate mutase
from Clostridium Cochlearium (wwPDB 1CCW), which is made up for three other chains B, C,
and D. This thesis uses the shorthand notation, wwPDB 1CCW-A to refer to coordinates of chain
‘A’ within the wwPDB 1CCW protein structure coordinate file.

12 CHAPTER 2. INTRODUCTION TO PROTEINS AND ALIGNMENTS

(a) (b)

Figure 2.3: An extract of coordinate data from (a) a Brookhaven PDB coordinate data file
containing two residues: a Metheonine followed by a Glutamic Acid. (b) a PDBML file defining
the coordinate data for a single nitrogen atom (the first in this structure) from a Metheonine
residue. Areas containing important information are highlighted. In red is the index for each
atom, the atom identifier is in green: Cα Cβ and so forth. The blue area contains the three-
letter residue code from Table 2.1 above. This is followed by the chain identifier (in orange) and
the residue index (in purple). The yellow area contains the x, y, z coordinates for the atoms,
respectively.

2.1.3 Structure Determination and Prediction

The oldest and most common method used to experimentally determine the structure of pro-
teins is X-ray crystallography (Kendrew et al., 1958; Muirhead and Perutz, 1963). Nuclear
Magnetic Resonance (NMR; Wagner and Wüthrich (1978)) and Low-temperature Electron Mi-
croscopy (Adrian et al., 1984) are other techniques that can be used to resolve the coordinates
of protein structures. These techniques are briefly described here along with a brief description
of computational methods for predicting the structure of a protein from its sequence.

X-ray Crystallography. This technique begins by solidifying a sample of the protein into a
crystal (Kendrew et al., 1958; Muirhead and Perutz, 1963). The crystal is then placed into a
monochromatic X-ray beam (e.g., from a synchrotron). As the beam passes through the crystal
some of the X-rays are diffracted. The resulting diffraction pattern is recorded as the crystal
is rotated in the X-ray beam. These X-ray diffraction patterns are then used to compute the
electron densities of the atoms in the crystal. The primary structure and the electron densities
are combined to produce a model of the tertiary structure. This model is then refined for
several iterations to improve the quality (Lesk, 2010). X-ray crystallography most accurately
resolves the position of individual atoms in the protein structure. However, the disadvantage of
this method is that only a sub-set of proteins are crystallisable. In this case one of the following
two methods may be used.

Nuclear Magnetic Resonance Spectroscopy. This method involves placing a sample of the pro-
tein in a homogeneous magnetic field and recording resonance spectra from the protein as
determined by the electrical properties of the individual atoms in the protein (Wagner and
Wüthrich, 1978). This can be performed in multiple dimensions for large molecules such as
proteins. The advantages of this method over X-ray crystallography are that larger structures
can be resolved and no crystallisation is required. Also, NMR records the range of natural
movements that occur within protein structures. However, NMR cannot deliver the resolution

2.1. INTRODUCTION TO PROTEINS 13

that X-ray crystallography (Lesk, 2010).

Low-temperature Electron Microscopy. In this method, a sample of the protein is snap-frozen
to cryogenic temperatures (Adrian et al., 1984). Images of the protein are then taken from
varying orientations to build up a 3D model. This method has several advantages over both
crystallography and NMR in that it can resolve large protein complexes. This method can be
combined with crystallography to produce very high resolution structures.

Automatic or Computational Methods. Experimental determination of protein 3D structure is
significantly more difficult and expensive as compared to the determination of protein primary
structure (sequence) (Lesk, 2010). Given this, computational methods to predict protein 3D
structure from sequence information alone is an active area of research in computational struc-
tural biology (Lesk, 2010). However, this somewhat of a holy grail and is therefore an active
research area that has not converged on a reliable method for doing so. Methods for doing so
can be broken into two major categories: ab initio (de novo) modelling and homology (template
based) modelling.

Template free modelling describes a method of constructing a protein structure model from
a sequence alone. These methods are based on fundamental physical and chemical princi-
ples of protein folding and sometimes statistical knowledge of protein folding patterns (Lesk,
2010). Some of the methods in this category are Rosetta@home (Simons et al., 1999) and
I-TASSER (Roy et al., 2010).

Template based modelling assembles known structural templates found by matching the
template sequence with the target sequence. This method is far less computationally complex
than ab initio methods and has had great success in accurately predicting protein structures
from sequences (Moult et al., 2014). Methods in this category include SWISS-MODEL (Schwede
et al., 2003) and FoldX (Schymkowitz et al., 2005).

The testing of tertiary structure prediction algorithms began on a large scale in the Critical
Assessment of Structure Prediction (CASP) (Moult et al., 2014) competition, which started in
1994, and later in the Critical Assessment of Fully-Automated Structure Prediction (Fischer
et al., 1999) competition. These competitions are primarily interested in testing the state-of-
the-art of algorithms to predict the structure of proteins from their amino acid sequences. Both
categories of methods for structure prediction mentioned above are tested.

2.1.4 Recurrent Substructural Themes and Classification

The standard secondary structures (generally helices and strands) are observed to combine into
substructural units. The amino acid chains of proteins often contain two or more compact
substructural units that fold independently into stable 3D conformations. Such substructural
units are referred to as domains and most proteins are composed of at least two domains (Vogel
et al., 2004). A domain is an independent structural unit (Richardson, 1981) of protein function,
evolution (Bork, 1991) and folding (Wetlaufer, 1973). The size of domains varies around an
average of approximately 100 amino acids (Wheelan et al., 2000).

Since domains can be viewed as the evolutionary units of protein structure, classification is
performed at the level of domains. Moreover, separate domains from multi-domain proteins are
often similar to other whole proteins (Richardson, 1981). Protein domains are hierarchically
classified into related groups. Two important databases for protein domain classification are
SCOP (Murzin et al. (1995); Lo Conte et al. (2000); http://scop.mrc-lmb.cam.ac.uk/scop)
and CATH (Orengo et al. (1997); http://www.cathdb.info). This thesis uses the updated

14 CHAPTER 2. INTRODUCTION TO PROTEINS AND ALIGNMENTS

SCOPe (Fox et al. (2013); https://scop.berkeley.edu) database which builds on SCOP and
adds new structures to the classification.

SCOP database (Murzin et al., 1995; Lo Conte et al., 2000). The Structural Classification Of
Proteins database classifies protein domains according to a four-level hierarchical tree with each
level given the name (in order, from the root of the tree, from furthest to closest in evolutionary
terms): Class, Fold, Superfamily, Family. Domains within a Class share different types of folds,
each with a similar type of secondary structure composition. For example a SCOP class may
contain domains that only contain arrangements of helical secondary elements. Proteins in the
same fold classification share similar secondary structure arrangement, order, and topology.
Within a fold classification, domains are further classified into superfamilies. Domains which
share a superfamily are likely to share an evolutionary relationship, but their relationship is
distant and, hence, share little sequence similarity. An example superfamily may be “Globin-
like”. Within the superfamily classification, closely related domains are classified within the
same family. Proteins in the same family share a clear evolutionary relationship. An example is
the “Globins” family. The human hæmoglobin protein, wwPDB 1HHO-A, is a domain classified
by SCOP as the following. Class: all helical proteins; fold: globin-like; superfamily: globin-like;
and family: globins.

CATH database (Orengo et al., 1997). The Class, Architecture, Topology and Homologous su-
perfamily database is broadly similar in its classification of protein domains to SCOP, however
it differs greatly in the details. CATH uses a combination of the SSAP (Taylor and Orengo,
1989) alignment program and human curation to classify known proteins into a four level hi-
erarchical tree: class (equivalent to SCOP class), architecture, topology (equivalent to SCOP
fold), and homologous superfamily (equivalent to SCOP superfamily). Proteins in the same
class share a similar secondary structure makeup (for example, one CATH class contains do-
mains that have mostly helical secondary structures). Those in the same architecture have a
similar arrangement of secondary structures, but no indication of homology (architecture clas-
sification is manually performed). Those in the same topology group share specific structural
features, while those in the same homologous superfamily are clustered by sequence similarity.
The example protein, wwPDB 1HHO-A, is a domain classified by CATH as the following. Class:
mainly helical; architecture: orthogonal bundle; topology: globin-like; and superfamily: globins.

According to these two domain classification databases, there are between 1195 and 1375
protein folds at the time of writing (June 2016). Given the large number of known protein
structures, it might be surprising that there are relatively few protein folds (or domains of
distinct topology in the parlance of the CATH database). In fact, the number of folds was
estimated to be approximately 1000 to 1500 by Chothia (1992), or up to several thousand by
Orengo et al. (1994). This relatively small number is likely due to the functional constraints
that evolution places on protein structures. Proteins of diverse evolutionary origin tend to
converge, in parallel, on similar folds according to their function, or diverge from a common
ancestor maintaining the same fold through selective pressure to retain function (Richardson,
1981; Chothia and Lesk, 1986; Murzin, 1998; Edwards and Deane, 2015).

At a finer level, regularity also exists at the smaller scale when combining a few secondary
structure elements. These common combinations are known as supersecondary motifs. Some
examples of common supersecondary motifs are shown in Figure 2.4. Figure 2.4(a) shows what
is known as a β-hairpin, a pair of anti-parallel strands connected by a small coil. Figure 2.4(b)
shows a helix-turn-helix motif, which is a a pair of helices connected by a partial helical turn.

2.1. INTRODUCTION TO PROTEINS 15

Figure 2.4(c) shows a related motif known as an EF hand a pair of helices connected by a small
coil region. The loop is usually 12 residues long. Finally, Figure 2.4(d) shows a helical motif,
this is a series of strands formed into a helical pattern with, in this case, three faces (but these
motifs may only have two faces). These are examples of some common supersecondary motifs.
There are, however, many more and finding these motifs is an active area of research (Unger
et al., 1989; Rooman et al., 1990; Camproux et al., 1999; Micheletti et al., 2000; Kolodny et al.,
2002; Friedberg and Godzik, 2005; Joseph et al., 2010; Konagurthu et al., 2013; de Oliveira
et al., 2015).

(a) (b) (c) (d)

Figure 2.4: Some examples of common supersecondary motifs. (a) A Beta hairpin motif. (b)
A helix-turn-helix motif. (c) An EF hand motif. (d) A beta helix motif.

2.1.5 Geometric Constraints on the Protein Backbone Atoms

The topology and geometry of protein structure is subject to physical and chemical constraints.
The average bond lengths between atoms within amino acids of proteins was accurately esti-
mated by Marsh and Donohue (1967). They are, N–Cα: 1.46Å, Cα–C: 1.51Å, and C–N: 1.33Å.
These lengths are tightly constrained by the nature of the covalent bonds. The geometric
relationship between successive main-chain atoms can be defined using these bond lengths, to-
gether with the backbone dihedral angles (or torsion angles, see Figure 2.5) between successive
residues: ω (torsion about the bond between carbonyl C and amine N), φ (torsion about the
bond between N and central Cα) and ψ (torsion about the bond between Cαand C). The dihe-
dral angle ω is often very close to ±180o with the associated nitrogen bonded with a hydrogen
(from the amine group) and carbon double bonded with an oxygen (from the carbonyl group)
all lying in the same plane. Variation of the other two dihedral angles, φ and ψ cause proteins
to exhibit the observed variability in their 3D structures (Richardson, 1981).

Figure 2.6 shows the Ramachandran-Ramakrishnan-Sasisekharan plot (Ramachandran et al.,
1963) containing the frequency distribution of the dihedral angles φ and ψ. In general, the local
geometry that standard secondary structure elements (helices and strands of sheet) take, result
in the characteristic densities in this plot. Strands of sheet appear in the top-left quadrant,
and the most common types of helices appear in the bottom-left quadrant. Furthermore, there
are areas of the Ramachandran-Ramakrishnan-Sasisekharan plot, for example in large portion
of the bottom-right quadrant, which are forbidden and may indicate a poorly solved protein
structure.

It must be further noted that the planar nature of the ω dihedral angle, about the bond
connecting successive amino acids, imposes a strict constraint on the distance between succes-
sive Cα atoms along the protein backbone. Successive Cα-Cα distances has a mean of 3.8Å,
deviating rather tightly (often with a standard deviation of 0.2Å) about this mean value. This

16 CHAPTER 2. INTRODUCTION TO PROTEINS AND ALIGNMENTS

Figure 2.5: A section of protein main-chain showing the three backbone torsion (or dihedral)
angles. These angles describe the range of motion for the backbone. The bond between the N
and Cα atoms can be rotated, this rotation is described by the torsion angle φ. The rotation of
the bond between Cα and C atoms is called the ψ torsion angle. The ω torsion angle between C
and N is very limited, making the peptide chain planar between Cα atoms (shown with purple
planes between Cα atoms).

is an important fact that will be used extensively throughout the remainder of this
thesis.

2.1.6 Topology of Proteins and Structural Plasticity

The approximate relative positions, orientations and the sequential ordering of secondary struc-
tural elements is described by their topology (Levitt and Chothia, 1976; Westhead et al., 1999).
This is a simplified description of the protein fold that can be described in a diagram known
as a Topology of Protein Structure (TOPS) cartoon. An example of a TOPS cartoon appears
in Figure 2.7.

Proteins are not static objects, but are often flexible and prone to plastic deformation
and domain motion (Bu and Callaway, 2011). Plasticity refers to the ability of a protein to
flex, deviate, and adopt alternate conformations. These conformational changes have a variety
of functions which include catalysis, transport, formation of complexes and motion (Gerstein
et al., 1994). These changes often occur through the interaction with other molecules known
as ligands (Frauenfelder et al., 1991). Often these molecules attach (or bind) to the protein at
a specific place, known as a binding site, allowing the protein to accomplish a function. For
example, the human hæmoglobin protein (wwPDB 1HHO) binds a heme ligand with attached
oxygen to transport within the blood stream. These binding sites are the functionally important
parts of the protein, the functionally unimportant, or less important parts of the protein are
somewhat free to change their conformation. Alternatively, conformational changes can also
occur through sequence mutations or the folding environment (Meier and Özbek, 2007). Closely
related proteins can appear to deform with the insertion or deletion of only a few residues (Vetter
et al., 1996; Simm et al., 2007). All of these conformational changes are constrained to allowed
regions in the Ramachandran-Ramakrishnan-Sasisekharan plot, as described above and shown
in Figure 2.6.

Secondary structural elements are stable relative to the joining coil regions. These coils
are often small and conformational changes within them do not represent a large change to
the overall shape of the protein. Larger conformational changes occur between domains in the
form of hinge or sheer motions (Gerstein et al., 1994). Gerstein et al. (1994) provide many
examples for each of these types of domain motions. Various methods exist to determine the

2.2. ALIGNMENT OF PROTEINS 17

Figure 2.6: Ramachandran-Ramakrishnan-Sasisekharan density plot showing the distribution of
combinations of φ, ψ dihedral angles. The boundaries appear around areas generally enclosing
secondary structural geometry: helices, sheets and left-handed helices. φ is on the x-axis and
ψ is on the y-axis. (Ramachandran and Sasisekharan, 1968)

locations and to characterise the movement mechanism for domain motion. These methods
include HingePROT (Emekli et al., 2008) and DynDom (Hayward and Berendsen, 1998).

Point Hinge motions are the result of large changes in backbone torsion angles in a localised
region (Gerstein et al., 1994). This may occur in an extended strand secondary structure (Ger-
stein and Chothia, 1991), a section of coil, or (to a limited extent due to stricter chemical
constraints) in helical secondary structures (Gerstein and Chothia, 1991). These types of mo-
tions often happen at the terminals of secondary structural elements (Hayward, 1999). Hinge
motions also take the form of planar hinges which are the result of hinge motion of intercon-
nected strands of sheet moving together like the folding of a sheet of paper. The sheet remains
packed together in any conformation of the hinged domains. An example of this kind of hinge
motion can be observed in Figure 2.8 and is described by (Gerstein et al., 1993). Finally, sheer
motions involve a sliding movement between domains. This type of motion does not cause the
main chain to deform very much and are controlled by side-chain motion (Gerstein et al., 1994).

2.2 Alignment of Proteins

An alignment (Rao and Rossmann, 1973) of proteins refers to the assignment of one-to-one,
(commonly) order-preserving correspondence (or equivalence) between a subset of their amino
acids. Alignments can be computed between two or more proteins. This thesis specifically
deals with pairwise alignments, or alignments between two proteins. Throughout this thesis
the symbols S and T are used to denote the two proteins being aligned. Specifically, S and T
are (linearly) ordered sets containing respective amino acid (atomic coordinates of the central
carbon, Cα, atoms¶), in the order they appear from N- to C-terminal of each protein.

¶This description of protein backbone at the level of Cα is common in the field, as the 3D trace of Cα
atoms is sufficient to distinguish the structural similarities and differences between proteins. More on protein
structural representations can be found in Section 2.2.4.

18 CHAPTER 2. INTRODUCTION TO PROTEINS AND ALIGNMENTS

Figure 2.7: A Topology diagram for the protein structure wwPDB 1CCW, chain A. Helices are
represented by cylinders, and strands are represented by arrows. The length is proportional to
their length in the structure. The N terminus of the protein is labelled with an N in a dark blue
box, and the C terminus is labelled with a C in a red box. The connected sheet of anti-parallel
strands is highlighted by a blue background. This image was produced by the pro-origami
software (Stivala et al., 2011).

(a) Closed. (b) Open.

Figure 2.8: An example of a hinge rotation in the iron binding protein lactoferrin. The N-
terminal of this protein contains two domains, marked in red and green. The domains close
together when iron is bound, as in (a). The domains open apart when iron is not bound, as in
(b). The individual domains are rigid in each conformation. The closed conformation between
domains in (a) is given in wwPDB 1LFG. The open conformation between domains in (b) is
given in wwPDB 1LFH.

Thus, any pairwise (order-preserving) alignment can be represented as a 2×n matrix, where
the rows represent the two proteins being aligned and the columns� represent the correspon-
dence (or lack thereof) between amino acids of the two proteins. An example of an alignment
representation between two proteins appears in Figure 2.9(a).

A column of any alignment has one of the following three states:

Match: defines a one-to-one correspondence between a pair of amino acids, one from each
protein. These columns appear without the gap symbol (‘−’).

Delete: defines the absence of a correspondence for an amino acid residue in S. Such columns
are represented with the gap symbol in the second row.

�If |S| and |T | denote the sizes of the two proteins, then the number of columns is always in the range
max(|S|, |T |) ≤ n ≤ |S|+ |T |.

2.2. ALIGNMENT OF PROTEINS 19

Insert: defines the absence of a correspondence for an amino acid residue in T . Such columns
are represented with the gap symbol in the first row.

These state definitions will be used throughout this thesis.

2.2.1 Protein Structural Alignment

Alignments are often used to infer homology, that is, an evolutionary relationship between
proteins (Eidhammer et al., 2000). As organisms evolve (and diverge) from their common
ancestor, so do their protein domains (Vogel et al., 2004). Therefore, an alignment is often an
attempt to identify (and pair-up) amino acids that are derived from the same position in the
genetic sequence of a common ancestor.

An alignment between proteins can be computed based on different sources of information:

Sequence Alignment: The assignment or residue-residue correspondences is made primarily
using the information from the type and physico-chemical characteristics of the amino
acids as part of the protein chain.

Structural Alignment: The assignment of residue-residue correspondences is made primarily
using the atomic 3D coordinates of the amino acids in the protein chain (See Section 2.2.4).

When aligning proteins that share a very close evolutionary relationship, both sequence and
structural alignments are often consistent with each other. However, sequence and structural
alignments radically differ as the relationship between two proteins diverge. As noted earlier
in Section 2.1.4, protein structures are directly constrained by selective pressure to retain their
structure, but are freer to accrue changes to their sequence. Therefore, structures change more
conservatively than their sequences in evolution (Chothia and Lesk, 1986; Abroi and Gough,
2011; Illerg̊ard et al., 2009). Most homologous proteins preserve a common core within their 3D
structure (Chothia and Lesk, 1986). This core comprises one or more regions of residues that
retain the same topology of their folding patterns, varying only in their spatial and geometric
details (Konagurthu et al., 2006). Peripheral regions outside the common core tend to refold
entirely and cannot be meaningfully aligned. Although pairwise sequence alignment cannot
identify such regions, pairwise structural alignment can. Thus, structural alignments can
reveal relationships that are otherwise invisible when only aligning sequences (Perutz et al.,
1965; Lesk, 2000) and, therefore, offer a more accurate picture of homology, even for very
distantly related proteins (Chothia and Lesk, 1986).

2.2.2 Formulation of the Structural Alignment Problem

Given the atomic coordinates of two protein structures S and T , the structural alignment
problem involves the following separate tasks:

The alignment task: As stated above, (Section 2.2.1) a structural alignment is the assign-
ment of one-to-one correspondence between amino acids, using the information from their
3D atomic coordinates. This can be posed as a combinatorial optimisation problem re-
quiring an objective function (a measure of structural alignment quality) and a search
method to find an optimal alignment under the stated quality measure. Current tech-
niques for formulating an objective function are reviewed below (Section 2.2.5) as well
as being discussed in detail in Section 4.2. A review of alignment methods appears in
Section 6.2.

20 CHAPTER 2. INTRODUCTION TO PROTEINS AND ALIGNMENTS

VGTTTTLEKRPEILIFVNGYPIKFLLDTGADITILNRR

--PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEM

DFQVKNSIENGRQNMIGVGGGKRGTNYINVHLEIRDEN

SLP----GRWKPKMIGGIGGFIKVRQYDQILIEICG--

YKTQCIFGNVCVLEDNSLIQPLLGRDNMIKFNIRLVM

---HKAIGTVLVGP---TPVNIIGRNLLTQIGCTLNF

(a) (b)

Figure 2.9: A pairwise protein structural alignment: (a) Structure based sequence alignment
of Feline Immunodeficiency Virus Protease (green) and Human Immunodeficiency Virus Pro-
tease (blue). (b) Optimal structural superposition given the alignment in (a). The Feline
Immunodeficiency Virus Protease protein structure appears again in green, and the Human
Immunodeficiency Virus Protease protein structure in blue.

The superposition task: Once the residue-residue correspondence has been established by
the alignment task, the coordinates of two proteins are spatially transformed such that the
atomic coordinates of equivalent amino acid residues come as close as possible. This allows
the structural similarity, as defined by a given structural alignment, to be understood
visually and quantitatively. An illustration of a superposition, given an alignment, is
shown in Figure 2.9(b). The analytical aspects of the superposition task are discussed in
detail in Section 2.2.3 below.

2.2.3 Protein Structural Superposition

As mentioned above, the superposition of protein structures provides a visual and numer-
ical means to evaluate the similarity and differences between protein structures (see Fig-
ure 2.9(b)) (Cohen and Sternberg, 1980). The numerical measure provides a descriptive statistic
of the distances between corresponding amino acids.

Each atomic coordinate of any protein is a vector (or point) in Euclidean space, R3. There-
fore, once the pairwise alignment task is completed, the corresponding amino acid residues can
be collected into two vector sets with each vector in a set corresponding to its equivalent in
the other set. The optimal superposition (under some pre-defined definition of optimality) of
these two vector sets poses yet another optimisation problem. A near universal criterion of
optimality for the superposition problem is the minimisation of the root mean square devia-
tion (RMSD) between corresponding vector sets. This criterion arises from the least squares
superposition problem, which is solved by finding orthogonal, linear transformations (rotation
and translation) of the vector sets that minimise the squared error between the corresponding
vectors in each vector set (Lesk, 2000, 2001b; Eidhammer et al., 2004).

The least squares superposition problem can be formally stated as follows. Given two sets
of Ne corresponding vectors in R3:

U = {~u1, ~u2, . . . , ~uNe} and V = {~v1, ~v2, . . . , ~vNe}

where each ~ui is in correspondence with ~vi between the two sets, U and V. Thus, the problem
is to find the best orthogonal rotation (representable as a real square symmetric matrix R3×3

2.2. ALIGNMENT OF PROTEINS 21

with a determinant of +1) and translation (representable as a vector, ~t3×1) which minimises
the squared error of superimposing U onto V:

ξ = min
Ne∑
i=1

‖R~ui + ~t− ~vi‖2 (2.1)

where ‖~x‖ is the L2-norm of the vector ~x.
The solution to the optimal translation can be made independently of the solution to the

optimal rotation (Alt et al., 1988). This can be found by differentiating ξ with respect to ~t and
evaluating it at its extremum:

∂ξ

∂~t
=

∂

∂~t

Ne∑
i=1

‖R~ui + ~t− ~vi‖2 = 2

Ne∑
i=1

(
∂(R~ui + ~t− ~vi)

∂~t
(R~ui + ~t− ~vi)

)
= 0

=⇒
Ne∑
i=1

(
R~ui + ~t− ~vi

)
= 0 =⇒ R

Ne∑
i=1

~ui +Ne~t−
Ne∑
i=1

~vi = 0

=⇒ ~t =
1

Ne

Ne∑
i=1

~vi︸ ︷︷ ︸
V centre-of-mass

−R 1

Ne

Ne∑
i=1

~ui︸ ︷︷ ︸
U centre-of-mass

Since the optimal transformation involves the optimal translation of the centres-of-mass of the
two vector sets, computing the optimal translation can be separated from the computation of
the optimal rotation by translating the two vector sets, such that their centres-of-mass coincide
with the origin: ~u′i = ~ui − 1

Ne

∑Ne
j=1 ~uj, ~v

′
i = ~vi − 1

Ne

∑Ne
j=1 ~vj ∀1 ≤ i ≤ Ne. The vectors sets U

and V can thus be transformed to become: U′ = {~u′1, ~u′2, . . . , ~u′Ne} and V′ = {~v′1, ~v′2, . . . , ~v′Ne}.
It follows that removing the translation term from the previous objective function in Equa-

tion 2.1 yields a modified, but equivalent, objective function which is independent of the trans-
lation ~t:

ξ = min
Ne∑
i=1

‖R~u′i − ~v′i‖2 (2.2)

And the RMSD can thus be defined as:

RMSD(U′,V′) =

√√√√ 1

Ne

Ne∑
i=1

‖R~u′i − ~v′i‖2 (2.3)

Remarkably, this optimisation problem can be both solved exactly and efficiently, and in-
volves a computational effort that grows linearly with the number of correspondences in the
vector sets, O(Ne). Methods for calculating a superposition of two equal size vector sets have
improved over time. The most important of these methods are briefly summarised below.

McLachlan (1972). This procedure assigns a weight to each atom after translating the
centre-of-mass of the query structure and the reference to the origin of the coordinate system.
The problem is reduced to finding a rotation matrix such that a similarity function is minimised.
McLachlan presents two methods (McLachlan, 1972, 1982) to find the rotation matrix. One
is an iterative method derived from the Jacobi matrix diagonalisation algorithm, the other is
an analytical solution. Both algorithms fail to eliminate potential matches that are clearly

22 CHAPTER 2. INTRODUCTION TO PROTEINS AND ALIGNMENTS

outside a given threshold. Further, the analytical solution contains many special-cases where
the approach fails.

Kabsch (1970s). Later, Kabsch (1976, 1978) presents a purely analytical method to solve
the superposition problem in matrix form. The solution involves finding a symmetric matrix
of Lagrange multipliers to find an orthogonal matrix, U, that minimises the metric function:
E = 1

2

∑
n (U~un − ~vn)2 Eigenvalues are extracted using singular value decomposition and the

minimised value for the similarity metric is found. This method does have some exceptions,
such as a zero eigenvalue when all vectors in ~un and ~vn are in the same plane. Kabsch does
however present a solution for this special case.

Lesk (1986). This algorithm finds the optimal rotation matrix as a function of 4 parameters,
where the axis of rotation is defined explicitly. It is noted that this, along with the explicit
rotation, eliminates the possibility of inverting the orientation of the coordinate system, re-
sulting in a sub-optimal RMSD value. Rustici and Lesk (1994) build on the ideas presented
above by introducing the concept of a lower bound on the RMSD. Calculating a lower bound
on the RMSD allows the algorithm to avoid a calculation of the optimal superposition, where
the lower bound is larger than the threshold for any particular comparison. They note that
their results are good but they expect the algorithm to do better.

Daimond (1988). This is a method similar to that of Lesk (1986). Only half the required
angle of rotation is required for the parameterisation of the rotation matrix. The problem
becomes that of a 4× 4 eigenproblem or an inversion of a 3× 3 matrix. This method is a slight
improvement on that of Lesk (1986), however it becomes unstable as the angle of rotation
approaches π, where an inverse is not defined because the matrix becomes singular (Theobald,
2005).

Kearsley (1989). A very elegant approach to the superposition problem was proposed
by Kearsley (1989), which solves the least squares superposition problem as an eigenvalue
problem in quaternion parameters, using quaternion algebra (Hamilton, 1844). This approach
builds a 4 × 4 symmetric matrix (from quaternion parameters) and finds the smallest eigen-

value, min(λ) in this matrix, which is related to the RMSD by
√

min(λ)
Ne

. This has a number

of advantages over the algorithms provided by McLachlan (1972) and Kabsch (1976, 1978).
Namely, there are no special cases for the method and it does not suffer from a degeneracy of
the axes of rotation for some orientations, known as “gimbal lock” (Kearsley, 1989).

Note that this method is used extensively for any superposition throughout this the-
sis. Provided below is the analytical solution of the least-squares superposition problem using
Kearsley’s method (Kearsley, 1989). While understanding the details of the derivation is not
necessary to understand the rest of this thesis, it is provided below as a reference for interested
readers. This solution informs the derivation of sufficient statistics (Konagurthu et al., 2014)
for this problem, which is explained in Section 7.2 of this thesis. Further, it serves as a pillar
for the efficient computation of structural alignments using MMLigner (Chapter 6) and I-value
(Chapter 5) as outlined in this thesis.

This derivation begins with some preliminaries on quaternion algebra (Hamilton, 1844; Kar-
ney, 2007), which provides a powerful method to describe rigid-body rotations in R3 (Mackay,

2.2. ALIGNMENT OF PROTEINS 23

1984). The set of quaternions is equivalent to a four dimensional vector space over the real num-
bers. A quaternion, q, consists of four values: a scalar part, q1, and a vector part: 〈q2, q3, q4〉 = ~q:
q = (q1, q2, q3, q4) = (q1, ~q). Each quaternion q has a conjugate: q̄ = (q1,−~q).

Addition between quaternions, p and q is defined as p + q = (p1 + q1, ~p+ ~q). Quaternion
multiplication is associative but not commutative and is defined for the quaternions, p and q
as: pq = (p1q1 − ~p · ~q, p1~q + q1~p+ ~p× ~q). The quaternion-norm is defined as: ‖q‖ =

√
qq̄.

The inverse, q−1 is: q−1 = (q1,−~q)
‖q‖2 . And if q is a unit quaternion: q−1 = q̄.

Any 3D rotation can be defined by a unit quaternion, given a unit vector representing an axis
of rotation, â, and a rotation angle, θ, the rotation can be defined as: q̂ = (cos (θ/2) , â sin (θ/2)).
The rotation of a vector, ~v, to yield a rotated vector, ~v′ is achieved, using quaternion algebra,
by: ~v′ = q̂−1(0, ~v)q̂.

Recall from Equation 2.2 that the function to be minimised is the least squares error between
Ne corresponding points from the vector sets, U′ and V′. A quaternion is used to represent
the residual vectors, or individual error vectors (~ei = R~u′i − ~v′i) between coordinates in U′ and
V′ rotated by a quaternion, q̂ in R3, ∀i ∈ (1, . . . , Ne) as:

(0, ~ei) = (0, ~v′i)− q̂−1 (0, ~u′i) q̂ (2.4)

The problem, then, is to construct a q̂ that minimises,
∑
‖~ei‖2 =

∑
‖(0, ~ei)‖2. This can be

simplified by multiplying Equation 2.4 by q̂:

q̂ (0, ~ei) = q̂ (0, ~v′i)− (0, ~u′i) q̂ (2.5)

And using this to construct a modified error function:

ξ′ =
Ne∑
i=1

‖q̂ (0, ~ei) ‖2 (2.6)

Expanding the modified error function gives: ξ′ =
∑Ne

i=1 ‖ (−~q · ~ei, q1~ei + ~q × ~ei) ‖2 =
∑Ne

i=1 ‖q‖2‖~ei‖2 =

‖q‖2
∑Ne

i=1 ‖~ei‖2. When q̂ defines a pure rotation (no dilation), ξ′ reduces to the unmodified
error function since ‖q̂‖ = 1. Therefore, substituting Equation 2.5 into the expansion gives:

ξ =
Ne∑
i=1

‖q̂ (0, ~v′i)− (0, ~u′i) q̂‖2 (2.7)

This can be expanded using the quaternion product as:

ξ =
Ne∑
i=1

‖ (−~q · ~v′i, q1~v
′
i + ~q × ~v′i)− (−~u′i · ~q, q1~u

′
i + ~u′i × ~q) ‖2

=
Ne∑
i=1

‖ (−~q · ~v′i + ~u′i · ~q, q1~v
′
i + ~q × ~v′i − q1 · ~v′i − ~u′i · ~q) ‖2

=
Ne∑
i=1

‖ (−~q · (~v′i − ~u′i), q1(~v′i − ~u′i) + ~q(~v′i − ~u′i)) ‖2

24 CHAPTER 2. INTRODUCTION TO PROTEINS AND ALIGNMENTS

The squared norm of a quaternion, Q, is:

‖Q‖2 = QQ̄ = (Q1, ~Q)(Q1,− ~Q)

= (Q2
1 + ~Q · ~Q,−Q1

~Q+Q1
~Q+ ~Q×− ~Q)

= Q2
1 + ~Q · ~Q

Therefore, after expanding the respective Cartesian components of ~q, ~u′ and ~v′, the error
function becomes:

ξ =
Ne∑
i=1

(
(q2(vxi − uxi) + q3(vyi − u

y
i) + q4(vzi − uzi))2

+ (q1(vxi − uxi) + q3(vzi + uzi)− q4(vyi + uyi))
2

+ (q1(vyi − u
y
i) + q4(vxi + uxi)− q2(vzi + uzi))

2

+(q1(vzi − uzi) + q2(vyi + uyi)− q3(vxi + uxi))
2
)

To ensure q defines a rotation only, ‖q‖ is constrained to 1 using the Lagrangian as follows:

Λ(q, λ) =
Ne∑
i=1

(
(q2(vxi − uxi) + q3(vyi − u

y
i) + q4(vzi − uzi))2

+ (q1(vxi − uxi) + q3(vzi + uzi)− q4(vyi + uyi))
2

+ (q1(vyi − u
y
i) + q4(vxi + uxi)− q2(vzi + uzi))

2

+(q1(vzi − uzi) + q2(vyi + uyi)− q3(vxi + uxi))
2
)

+ λ(1− q2
1 − q2

2 − q3
3 − q2

4)

Differentiating Λ(q, λ) with respect to each q component and setting to zero, results in a set
of linear equations that can be represented in matrix form as an eigenvalue problem:
∑

(x2
m + y2

m + z2
m)

∑
(ypzm − ymzp)

∑
(xmzp − xpzm)

∑
(xpym − xmyp)∑

(ypzm − ymzp)
∑

(x2
m + y2

p + z2
p)

∑
(xmym − xpyp)

∑
(xmzm − xpzp)∑

(xmzp − xpzm)
∑

(xmym − xpyp)
∑

(x2
p + y2

m + z2
p)

∑
(ymzm − ypzp)∑

(xpym − xmyp)
∑

(xmzm − xpzp)
∑

(ymzm − ypzp)
∑

(x2
p + y2

p + z2
m)




q1

q2

q3

q4

 = λ


q1

q2

q3

q4


~q = (q1, q2, q3, q4)> are the unknown (to be solved) quaternion components associated with a

3D rotation, and λ is an (unknown) eigenvalue. In the eigenvalue problem defined in Equa-
tion 2.8, the notation xm, a scalar quantity, denotes the component-wise difference vxi − uxi
(equivalent notations for ym and zm) and the scalar xp denotes the component-wise sum vxi +uxi
(equivalently, yp and zp). Diagonalising this 4×4 symmetric matrix yields four eigenvalues and
(corresponding) eigenvectors. (Kearsley, 1989) shows that the eigenvector corresponding to the
smallest eigenvalue, λmin, corresponds to the best rotation producing the least squares error,

and the RMSD is computed as

√
λmin

Ne

.

Numerical Considerations and Time Complexity

The RMSD and optimal rotation can be solved for analytically using Kearsley (1989), however
the process in not numerically stable. Therefore, stable eigenvalue decomposition algorithms
such that of Jacobi (1846) are used (Golub and van der Vorst, 2000).

2.2. ALIGNMENT OF PROTEINS 25

The computation of the 4 × 4 square symmetric matrix for Ne corresponding vectors re-
quires O(Ne) effort. The size of the matrix is always constant and implementations of the
Jacobi diagonalisation algorithm generally bound the maximum number of iterations by a con-
stant. Despite this, the number of iterations is generally very small anyway. Therefore, the
eigendecomposition takes constant, O(1) time. Therefore, the computation of RMSD by this
method takes linear, O(Ne) time.

2.2.4 Internal Representations Used for Structural Alignment

In Section 2.2.2, the structural alignment problem was divided into two separate tasks: super-
position and alignment. Section 2.2.3 discussed the superposition task. This section begins the
discussion of the alignment task by introducing several methods used by alignment programs
to store the protein structural data required to compute an alignment.

This is important because the type of structural representation used to compute an align-
ment has consequences for the trade-off between speed and accuracy of the alignment task.
Alignment algorithms may use several of these representations beginning with coarse repre-
sentations for rapid generation of approximate alignments and advancing to more detailed
representations to accurately refine the alignment.

Note that except in specific cases, all structural representations share some common features:
the order of amino acids in the protein is conserved,** they are invariant to the coordinate
system used to define the protein, and they have a level of robustness against errors in structure
determination (Eidhammer et al., 2004).

A coordinate representation. The most accurate methods describe a protein structure in
terms of the 3D coordinates of individual atoms. These are expressed as points in R3 space,
which are superimposed within a common frame of reference, as introduced Section 2.2.3. Most
often, only one or two atoms are used to represent each amino acid residue. Almost universally,
this is the central Cα carbon atom. However, some alignment programs also include the Cβ
atom for side chain orientation. This representation is the most common in structural align-
ment programs and is the most detailed (least abstracted from protein structures themselves)
and, thus, also requires more memory to store and more processing time to align. Popular
structural alignment programs that use this type of representation include CE (Shindyalov and
Bourne, 1998), MaxSub (Siew et al., 2000), FatCat (Ye and Godzik, 2003), LGA (Zemla, 2003),
MultiProt (Shatsky et al., 2004), CLICK (Nguyen et al., 2011), TM-Align (Zhang and Skolnick,
2005b) and SPAlign (Yang et al., 2012).

Distance matrices and contact maps. These are 2D representations of the 3D structural
information defined by their Cα atoms. With a distance matrix representation, a protein
structure, S, is represented by a matrix containing all-against-all inter-atomic distances within
a distance threshold. A contact map represents S using a matrix of boolean values where
and inter-atomic contact threshold is defined and all inter-atomic distances are either outside,
or within the contact distance threshold. In both cases the matrix is of the order |S| × |S|.
This representation is independent of the frame of reference and has an additional scope for
handling structural plastic deformation. The 3D structure of proteins can be reconstructed
from these representations, excepting chirality (Eidhammer et al., 2004). The advantages of
these matrices for alignment programs, despite the potentially large memory usage, are that
they are naturally independent of the coordinate frame of reference (require no processing to

**Under certain ordering constraints; e.g., cyclical shifting

26 CHAPTER 2. INTRODUCTION TO PROTEINS AND ALIGNMENTS

make them independent), and that similar 3D structures are clearly distinguishable using these
representations. Notable examples of structural alignment programs that use distance matrices
include, DALI (Holm and Sander, 1993), RAPIDO (Mosca et al., 2008), and GANGSTA+ (Guerler
and Knapp, 2008).

A tessellated representation. This involves dividing the space within a protein between
residues such that close spatial neighbours share a face, edge, or vertex. Tessellation of the
space (as in Figure 2.10) within a protein provides a coordinate system independent represen-
tation that also eliminates the requirement for a specified contact threshold. Contacts between
residues are well defined and the representation reflects the local geometry of the protein. Dif-
ferent tessellations, including the Delaunay triangulation (Delaunay, 1934) and the Voronoi
decomposition (Voronoi, 1908), have been used by structural alignment algorithms. Notable
examples of alignment programs that use a tessellated representation include TOPOFIT (Ilyin
et al., 2004), which uses a Delaunay tessellation representation, and Vorolign (Birzele et al.,
2006), which applies a Voronoi tessellation.

Figure 2.10: An example of
the Delaunay tessellation of a
Crambin (wwPDB 1CRN) pro-
tein. The thick line show-
ing connected Cα atoms repre-
sents the backbone of the pro-
tein. The thinner lines rep-
resent the tessellation. This
figure is reproduced from Ilyin
et al. (2004).

Coarse grained representations. The above representations are all accurate enough to
produce residue level structural alignments. The following representations, beginning with
structural profiles, are used to produce coarse, approximate alignments for rapid database
matching or later refinement. The general structure, or topology, of the protein can be broken
down into a representative string of secondary structural elements, or any discrete alphabet and
their relative geometry. This type of representation can be used for rapid pattern matching. An
example of this form of representation is the Tableau presented by Lesk (1995) and Konagurthu
et al. (2008). A Tableau represents a protein by the relative orientations of its secondary
structures. An example Tableau can be found in Figure 2.11. Alternatively, a representative
library of protein structural fragments may be used instead of secondary structures as in KL-
strings (Friedberg et al., 2007) which represent the entire protein structure using a set of
fragments, and each fragment with a symbol resulting in a string which can be used by string
pattern matching algorithms.

Finally, and most abstractly, the entire protein structure can be reduced to a single number
or string of numbers, a fingerprint (Wolfson and Rigoutsos, 1997; Chu et al., 2008; Sael et al.,
2008; Teichert et al., 2007; Zotenko et al., 2007) or histogram (Budowski-Tal et al., 2010).
Where similar structures evaluate to similar or identical fingerprints, database searches can
be performed extremely quickly. However, their utility in structural alignment is limited and
approximate matching is tricky (Hasegawa and Holm, 2009).

2.2. ALIGNMENT OF PROTEINS 27

β1 OT KK HH PD HH KK
OT αA OT OT OT PE OT
KK OT β2 HH PE HH KK
HH OT HH β3 OT KK HH
PD OT PE OT αB OS PE
HH PE HH KK OS β4 RT
KK OT KK HH PE RT β4

Figure 2.11: (a) An example tableau representation for the wwPDB 2ACY protein structure. The
diagonal is labeled with the secondary structure elements, the off-diagonals contain the encoded
relative orientations between secondary structural axes. Each relative orientation is described
by two letters. The first letter corresponds to one of the following: P-parallel; O-antiparallel;
R-crossing right; and L-crossing left. The second letter corresponds to the division of a circle
into quadrants for time of day: E-“elevenses”, D-“dinner”, S-“supper”, and T-“tea”. Finally,
two extra symbols are used to designate adjacent strands in the same sheet: KK for anti-parallel
strands, and HH for parallel strands. (b) The protein structure being encoded: wwPDB 2ACY,
the acylphosphatase protein from cow. The diagram contains labels on secondary structural
elements. α labels are used for helical secondary structures while, β labels are used for strand
secondary structures.

2.2.5 Protein Structural Alignment Scoring Functions

In order to decide if a given alignment is good, a system for assigning a quality value or score
to alignments needs to be defined reflect the extent of similarities (or dissimilarities) between
the aligned structures. This section presents an overview of some commonly used scoring
functions used in the structural alignment literature. This list is definitely not exhaustive, but
gathers only either the most popular and widely used measures, or those that are unique in the
technique they use. For a more comprehensive listing, the reader may wish to refer to other
reviews of structural alignment methods including Kolodny et al. (2005); Sippl and Wiederstein
(2008); Hasegawa and Holm (2009); Slater et al. (2013) and Ma and Wang (2014).

A scoring function defines an objective measure by which to gauge the similarity of protein
structures and an objective function by which to search for an optimal alignment. Intuitively,
the scoring function chosen should give a high score to structures that have large regions that
are geometrically similar (see Figure 2.9), and a low score to proteins that bear little structural
similarity.

Traditionally, the approach to determine the similarity of protein structures has been based
on two key criteria: coverage and fidelity.

Coverage measures the number of correspondences in an alignment and, in some cases,
also considers the number of gaps.

Fidelity measures how similarly positioned the aligned residues are. This is commonly
(but not always) based on the RMSD computed after the best rigid-body superposi-
tion of corresponding residues (See Section 2.2.3).

28 CHAPTER 2. INTRODUCTION TO PROTEINS AND ALIGNMENTS

To search for the best structural alignment, the goal of alignment algorithms is to simul-
taneously maximise coverage and fidelity. However, these two objectives are in direct conflict
with each other. Increasing the number of corresponding residues, or coverage, usually leads to
a loss of structural fidelity and vice versa. Therefore, alignment quality scoring functions must
reconcile this conflict by arbitrating, in various ways, between these two key criteria.

A table of various structural alignment scoring functions is presented in Table 2.2. It is not
important to fully comprehend each measure listed, rather it is important to note the various
ways in which the measures attempt to balance coverage with fidelity. To aid in reading the
table, terms for coverage are highlighted in blue and terms for fidelity are highlighted in red.
Where applicable, this thesis will continue to use blue/red colours to highlight the
coverage/fidelity terms respectively.

Table 2.2: A table of scoring functions used by popular alignment methods when determining
the quality of an alignment between protein structures S and T . The first column provides
the name of the method, the second the mathematical formula for the scoring function, the
third criteria by which to decide if the alignment is significant where such criteria could be
found in the literature (if the criteria could not be found this column is marked with N/A),
and the last column provides references for the details of the scoring function. The symbols
used in this table are as follows: Ne is the number of correspondences; Ng is the number
of gaps (the number of insertions plus the number of deletions); Ncontiguous is a number of
contiguous corresponding residue pairs; RMSD is the root mean squared deviation (as above,

see Equation 2.3); ~Si is the vector from the origin to the ith coordinate in the structure S; Lmin is
the minimum length between the structures being aligned: min(|S|, |T |); Lmax is the maximum
length between the structures being aligned: max(|S|, |T |); δi is the distance between the ith

pair of corresponding Cα atoms after rigid body superposition; C is a list of cut-off thresholds;
w is a user defined weighting parameter; φ and ψ are the dihedral angles; (φ, ψ)i is the straight
line distance in the Ramachandran-Ramakrishnan-Sasisekharan plot between the (φ, ψ) points
of the ith pair of equivalent residues; R(l) is the density at a point, l, in the Ramachandran-
Ramakrishnan-Sasisekharan plot. Note that alignment quality scores that are non-residue-level,
such as secondary structural alignment scores, are not included in this table. Terms for coverage
are highlighted in blue and terms for fidelity are highlighted in red.

Measure Formulation Significance Criteria
(Same Fold)

References

SSAP

Ne∑
i=1

Ne∑
j=1

500

10 +
∣∣∣(~Si−2 − ~Si)− (~Tj−2 − ~Tj)

∣∣∣ ln(SSAP)×
100

ln(50)
≥ 70

(Taylor and Orengo, 1989)
(Orengo and Taylor, 1990)
(Orengo and Taylor, 1996)

DALI

Ne∑
i=1

Ne∑
j=1

ΘE −
∣∣∣dSij−dTij ∣∣∣

d∗ij
e(
d∗
ij/α)2 , i 6= j

ΘE , i = j

L =
√
|S| × |T |

L′ = 7.95+0.71L−0.000259L2

−1.92×10−6L3

DALI− L′

0.5× L′
> 2

(Holm and Sander, 1993)
(Holm and Sander, 1998)

SAS
RMSD× 100

Ne
N/A (Subbiah et al., 1993)

2.2. ALIGNMENT OF PROTEINS 29

Table 2.2: (continued)

Measure Formulation Significance Criteria
(Same Fold)

References

STRUCTAL

score (Ss)

Ne∑
i=1

20

1 + (δi/5)2−10Ng

Z =


Ss − (cln(Ne)2

+dln(Ne) + e)

f log(Ne)+g
,Ne<120

Ss−(aln(Ne)+b)
f ln(Ne)+g

,Ne≥120

a = 0.872, b = 0.65, c = 0.155,

d = −0.619, e = 1.73,

f = 0.0922, g = 0.212

No threshold for fold

similarity was found

(Subbiah et al., 1993)
(Gerstein and Levitt, 1998)
(Levitt and Gerstein, 1998)

MaxSub
1

Lmax

Ne∑
i=1

1

1 + (δi/3.5)2
N/A (Siew et al., 2000)

PSI

(MAMMOTH)

Nδ≤4Å

Lmin

N/A (Ortiz et al., 2002)

GDT TS 100×
∑4
i=1

Nδi≤Ci
Ne

4
, C = {1, 2, 4, 8} N/A (Zemla, 2003)

GDT HA 100×
∑4
i=1

Nδ≤Ci
Ne

4
, C = {0.5, 1, 2, 4} N/A (Zemla, 2003)

LCS
Ncontiguous:δ≤C

Ne
N/A (Zemla, 2003)

LGA S3

2w

|C|(|C|+ 1)

|C|∑
i=1

(
|C| − 1 + 1

|C|
GDT(Ci)

)

+
2(1− w)

|C′|(|C′|+ 1)

|C′|∑
i=1

(
|C′| − i+ 1

|C′|
LCS(C′i)

)
,

C = {0.5, 1, ..., 10}, C′ = {1, 2, 5}, 0 ≤ w ≤ 1

This scoring function is a combination of

GDT and LCS.

N/A (Zemla, 2003)

Q-score
N2
e

|S||T |(1 + RMSD/3)2
N/A

(Krissinel and Henrick, 2003)
(Krissinel and Henrick, 2004)

TM-Score
1

Lmin

Ne∑
i=1

1

1 +
(

δi
1.24 3√Lmax−15−1.8

)2 TM-Score ≥ 0.5
(Zhang and Skolnick, 2004)
(Zhang and Skolnick, 2005b)
(Xu and Zhang, 2010)

TopoFit Ne − e0.84RMSD+1.25

eRMSD+1.64 − e0.84RMSD+1.25
TopoFit ≥ 3

(Ilyin et al., 2004)
(Leslin et al., 2007)

GSAS

{
RMSD×100
Ne−Ng

, Ne > Ng

99.9, Ne ≤ Ng
N/A (Kolodny et al., 2005)

SI
RMSD× Lmin

Ne
N/A

(Kleywegt and Jones,
November 1994)
(Kolodny et al., 2005)

MI 1−
1 +Ne

(1 + RMSD/1.5)(1 + Lmin)
N/A

(Kleywegt and Jones,
November 1994)
(Kolodny et al., 2005)

Relative
Similarity
(TOPMATCH)

100×
2Ne

|S|+ |T | N/A
(Sippl, 2008)
(Sippl and Wiederstein, 2008)

TALI 1

Ne

Ne∑
i=1

e
−
∫
(φ,ψ)i

R(l)dl N/A (Miao et al., 2008)

SP-score

(SPb)

1

3× Lmin
0.7

∑
δi<8

1

1 + (δi/4)2−0.2 SP-score ≥ 0.523 (Yang et al., 2012)

SP-score

(SPa)

1

3 ((|S| + |T |)/2)0.7

∑
δi<8

1

1 + (δi/4)2−0.2

30 CHAPTER 2. INTRODUCTION TO PROTEINS AND ALIGNMENTS

SSAP (Taylor and Orengo, 1989; Orengo and Taylor, 1990, 1996) is one of the earliest au-
tomatic methods for protein structural alignment. SSAP looks for local structural similarities
which it sums up into an aggregate global alignment. Significance criteria, normalised to have a
maximum value of 100, is defined (Orengo and Taylor, 1996) as in Table 2.2 above. A value in
the range 60–70 refers to a pair of structures approximately in the same Class. A value in the
range of 70–80 indicates a pair of structures with a similar Fold, and a value above 80 implies
a close structural relationship.

The DALI (Holm and Sander, 1993) algorithm introduced an elastic similarity score based
on distance matrices. This allows DALI to recognise structural relationships which rigid scoring
functions cannot find accurately of even at all. The DALI score is intended to compensate for
structures that are not rigid by using a relative (averaged) distance, rather than an absolute
distance between residues. DALI also defines an empirical z-score to determine the significance
of an alignment. The DALI z-score is based on an empirical distribution of DALI scores as a
function of the size of the protein (to eliminate any length dependence).

The Structural Alignment Score (SAS) (Subbiah et al., 1993) and Gapped SAS (GSAS) (Kolodny
et al., 2005) are simple geometric scores which combine the RMSD after superposition and the
number of equivalent residues and the number of gaps in the alignment. Kolodny et al. (2005)
define two other simple geometric scores to aid in deciding between alternative alignment qual-
ity scoring functions. These are the Similarity Index (SI) and the Match Index (MI). The
TOPMATCH (Sippl, 2008) relative similarity score is a similar simplistic geometric score (see Ta-
ble 2.2).

Subbiah et al. (1993) introduce a scoring function which, in Table 2.2 is referred to as the
STRUCTAL score. This score has some statistical basis and has become somewhat of a standard
for small modifications such the the MaxSub (Siew et al., 2000) score. TM-Score (Zhang and
Skolnick, 2004) is a further modification to remove the length dependence of the STRUCTAL

scoring function with an empirical cut-off value. The TM-Score is then defined in relation to
the length of one of the structures being aligned. The authors of the SP-Score (Yang et al.,
2012) measure argue that TM-Score is not fully length independent, and propose a further
modification to the length independent score. Instead of scaling the cutoff value, a normalisation
factor is used. The Q-Score defined by SSM (Krissinel and Henrick, 2003, 2004) is defined in
a similar fashion but can be computed faster because it does not require a summation over all
correspondences.

Critical Assessment of Structure Prediction (CASP) is a regular competition for the pre-
diction of protein structures from their sequences. The scoring function used for ranking the
quality of entries to this competition is the Global Distance Test: Total Score (GDT TS) (Zemla,
2003). This scoring function sets four increasing distance thresholds and defines its score as the
average proportion of correspondences that fall within these distance thresholds. Zemla (2003)
also defines a stricter version of GDT TS, called GDT HA or GDT: High Accuracy with a tighter
set of distance thresholds (GDT TS thresholds halved). GDT TS is the first of two scoring func-
tions that make up an LGA score (referred to in this thesis by LGA S3 because this is the output
description of the program supplied by Zemla (2003)), the second being the Longest Continuous
Segments (LCS). LCS is defined as the longest contiguous section of corresponding residues that
fall below a user-supplied distance threshold. The LGA S3 score fixes a set of thresholds for LCS
and mixes it with GDT TS using a weighted average for thresholds: smaller thresholds having a
greater impact on the score than larger thresholds. These scoring functions are easy and fast
to compute, but simplistic. MAMMOTH (Ortiz et al., 2002) defines a similar structural score called
Percentage of Structural Similarity (PSI), which is defined as the proportion of correspondences
below a distance threshold of 4Å.

2.3. SUMMARY 31

Uniquely amongst the scoring function described here is TALI (Miao et al., 2008), which
uses a torsion angle distance based on the statistical density of the Ψ and φ torsion angles in
the Ramachandran-Ramakrishnan-Sasisekharan plot (See Section 2.1.5).

In summary, except for some notable examples that have a statistical basis (especially
STRUCTAL score (Subbiah et al., 1993) and TALI (Miao et al., 2008)), the scoring functions
mentioned above are ad hoc combinations of heuristic measures of alignment quality. There is
no consensus on how to measure structural alignment quality, as each score arbitrarily weighs
a measure of coverage against a measure of fidelity to arbitrate between alignments. Recent
reviews have shown that, as a result of these ad hoc formulations, the alignments obtained
from programs using these measures often contradict each other (Kolodny et al., 2005; Sippl
and Wiederstein, 2008; Hasegawa and Holm, 2009; Slater et al., 2013; Ma and Wang, 2014).
However, it is recognised that in individual instances, some of these ad hoc measures gener-
ate useful alignments for biologists that are able to interpret different aspects of structural
relationships through, for example, aligned active and binding sites or similarities of protein-
protein interfaces (Hasegawa and Holm, 2009; Grishin and Phillips, 1994). Nevertheless, in
the majority of cases, these contradictory results do highlight a severe disconnect between the
rapidly growing number of methods and the quality of the structural alignments that programs
using them generate. These quality measures do not provide any framework to meaningfully
capture similarities and differences between competing alignments This traditional approach to
formulating an ad hoc scoring function from key alignment quality criteria, has been extensively
explored over the last four decades. The foundations for a radically new method of objectively
and rigorously selecting an alignment from a set of alternatives is described in the next section.
This is applied to the problem of quantifying alignment quality described in Chapter 4.

2.3 Summary

This chapter has presented general biological background on proteins and protein structure
required to understand the research presented in subsequent chapters. It also summarises
the field of protein structure comparison methods. There are a very large number of these
methods which is doubling approximately every 5 years (Hasegawa and Holm, 2009). All of the
scoring functions presented above make a trade-off, in some form, between alignment coverage
and goodness of fit. The terms involved in this trade-off are highlighted in the equations in
Table 2.2. A cursory examination of this table reveals a lack of agreement on how to measure
structural alignment quality. Without this, the notion of best (or optimal) alignment can
neither be rigorously defined nor searched for (Hasegawa and Holm, 2009).

32 CHAPTER 2. INTRODUCTION TO PROTEINS AND ALIGNMENTS

Chapter 3

Introduction to Statistical Inference

“The supreme goal of all theory is to make the irreducible basic ele-
ments as simple and as few as possible without having to surrender the
adequate representation of a single datum of experience.”

— A. Einstein (1933)

This chapter provides a primer on the probabilistic and statistical concepts used in the
research presented in the rest of the thesis. In doing so, it introduces key ideas involving the
theory of probability and statistical inference. In particular, it provides a broad overview
of inductive inference using the Minimum Message Length (MML) principle, a framework
that underpins the methodology used for the research introduced in this thesis.

33

34 CHAPTER 3. INTRODUCTION TO STATISTICAL INFERENCE

3.1 Definitions and Notations

Random experiment, trial, outcome and event: A random experiment is a procedure
that can be repeated as many times as under the same conditions, where the result
is uncertain. For example, rolling a die, or tossing a coin. Each repetition of a procedure
is called a trial. Each trial has an outcome. The set of outcomes of a random experiment
is called an event.

Sample space and random variable: The set of all possible events (outcomes) for a given
random experiment (trial) is called the sample space Ω of that experiment (trial). The
sample space of an event (outcome) can be a discrete set of possibilities, or a continuous
set of possibilities. For example, if the random experiment is to toss a coin twice, let
the first trial resul in Heads, and the second trial results in Tails. The outcomes of the
experiment are (Heads, Tails). The sample space for the trials is {Heads, Tails}. The
sample space from the experiment is {(Heads, Heads), (Heads, Tails), (Tails, Heads), (Tails,
Tails)}. Based on the underlying procedure, each repetition of a random experiment
(trial) can potentially yield a different event (outcome). A random variable X defines
a mapping function X : Ω → R that maps an event (outcome) ω ∈ Ω of a random
experiment (trial) to a distinct real valued number e ∈ R, not to be confused with the
probability of the event (outcome). If the random variable X produces an outcome ω
that maps to the value e, this is denoted as X = e.

Event probabilities and distributions: Each event (outcome) e from a random experiment
(trial) has a probability, denoted by Pr(X = e). (For brievity, this is also represented
as Pr(e).) Note that these probabilities, over the sample space of the experiment (trial),
are often non-uniform. The function that assigns probabilities for all measurable set of
events (outcomes) over the entire sample space of a random experiment (trial) is called a
probability distribution. By the total probability theorem,

∑
∀ei∈X Pr(X = ei) = 1. For a

sample space that is discrete, the distribution is called the probability mass function. For
a sample space that is continuous, the distribution is called probability density function.

Joint, marginal and conditional probabilities: If X and Y denote two random variables,
which are not necessarily independent, then they are said to be joint random variables.
Intuitively, the random variables are joint when an experiment (trial) produces an ordered
pair of outcome values ex and ey.For example, the probability that a card drawn from a
deck of 52 cards is both red and an eight. The joint probability of the outcome X = ex
and Y = ey is denoted by Pr(X = ex,Y = ey). For brevity, this is also represented as
Pr(ex, ey). The marginal (or unconditional) probability of the outcome value ex is:

Pr(X = ex)︸ ︷︷ ︸
marginal

probability

=
∑
∀eyi∈Y

Pr(X = ex,Y = eyi)

The conditional probability of the outcome X = ex given (or conditioned upon) the
outcome Y = ey is:

Pr(X = ex|Y = ey)︸ ︷︷ ︸
conditional probability

=
Pr(X = ex,Y = ey)

Pr(Y = ey)

3.2. PROBABILITY, INFORMATION AND ENTROPY 35

For example, what is the probability of the card drawn from the 52 card deck being an
eight, given that it is known to be red.

Product rule of probability: For joint random variables X and Y, the product rule gives
the relationship between joint, marginal and conditional probabilities as:

Pr(X = ex,Y = ey)︸ ︷︷ ︸
joint probability

= Pr(X = ex) Pr(Y = ey|X = ex)

= Pr(Y = ey) Pr(X = ex|Y = ey)

It is easy to see that, if the two random variables are independent of each other, repre-
sented as X |= Y, then product rule becomes:

Pr(X = ex,Y = ey) = Pr(X = ex) Pr(Y = ey)

.

Bayes theorem (Bayes and Price, 1763): This fundamental theorem follows from the prod-
uct rule and can be used to characterise the probability of an event (outcome), based on
conditional probabilities related to that event (outcome) as:

Pr(X = ex|Y = ey)︸ ︷︷ ︸
posterior probability

of X = ex after
observing Y = ey

=

prior probability

of X = ex︷ ︸︸ ︷
Pr(X = ex)

Likelihood of Y = ey︷ ︸︸ ︷
Pr(Y = ey|X = ex)

Pr(Y = ey)︸ ︷︷ ︸
prior probability

of Y = ey

In this Bayesian interpretation of the product rule, each probability term reflects a degree
of belief (see Section 3.2 for details). Specifically, Pr(X = ex) and Pr(Y = ey) are the ini-
tial degrees of belief (or priors) about the outcome X = ex and Y = ey respectively. The
conditional probability term Pr(Y = ey|X = ex) gives the degree of belief (or likelihood)
of the outcome Y = ey given that X = ex has been observed. Finally, the conditional
probability term Pr(X = ex|Y = ey) gives the degree of belief (or posterior probability)
of the outcome X = ex, having accounted for the outcome Y = ey.

Expectation of a random variable: For a random variable X, whose outcome values, e, are
mapped to real numbers, each with probability Pr(e), the expectation of X, represented
as E(X), defines the average outcome value of X under the probability distribution of
X. When the random variable has a discrete set of outcomes, then the expectation
can be formalised as: E(X) =

∑
∀e∈X ePr(e). And for a continuous set of outcomes:

E(X) =
∫
∀e∈X

ePr(e)de.

3.2 Probability, Information and Entropy

Over the last few centuries, the precise meaning of probability has been interpreted in many
different ways. However, two interpretations stand out and are widely used (Hájek, 2003):

Physical interpretation of probability: In this interpretation, the probability of an out-
come is objectively determined as the relative frequency of an outcome in a long run

36 CHAPTER 3. INTRODUCTION TO STATISTICAL INFERENCE

of trials from a random experiment. For example, if an experiment containing 10 trials
of tossing a coin produces the string of outcomes: HTHHTTTHTT, then the probability of
getting Heads in the next toss with the same coin is estimated by this relative frequency
definition as: 0.4.

Evidential or Bayesian interpretation of probability In this interpretation, any propo-
sition can be assigned a probability that reflects a subjective plausibility or degree of
belief about that proposition. This is founded on, and supported by empirical evidence.
For example, the proposition “all swans are white” can be assigned a probability of (say)
0.85. This degree of belief may arise from the available evidence, and can be updated in
the face of new evidence.

The degree of belief (Bayesian) interpretation of probability, for some outcome X = e,
is tied to the measure of information I(e) conveyed by the statement of that outcome. But
what is information? According to Wallace (2005), information is something that decreases the
uncertainty about some outcome. Intuitively, in this context the measurement of information
of an outcome can be seen as the length of the shortest statement (or message) conveying that
outcome.

Such a measure of information is a continuous and decreasing function of probability. For two
outcome values {e1, e2} of the same random variable X, if Pr(e1) > Pr(e2), then I(e1) < I(e2).
In the extreme case, when Pr(e) = 1 then I(e) = 0: that is, no (extra) information needs to be
conveyed about an outcome that is certain. Further, suppose that e1 and e2 are two independent
outcomes. Then, it is easy to see that the measure of information of both these outcomes,
I(e1, e2) is simply the sum of individual measures of information: I(e1, e2) = I(e1) + I(e2).
Since, as stated above, information is a function of probability, I(e1, e2) is a function of the
joint probability Pr(e1, e2) of the independent event which can be expressed as Pr(e1) Pr(e2).
In other words, information (as the function of probability) is additive when probabilities are
multiplicative.

Bringing all of these observations together through the landmark work of Claude E. Shan-
non (Shannon, 1948), the mathematical function that fits all the above requirements is:

Shannon Information content: I(e) = log(
1

Pr(e)
) = − log(Pr(e)) (3.1)

This measure of information is defined as the Shannon information content of the outcome
e (MacKay, 2003). Equation 3.1 suggests that, given the probability of event e is Pr(e), the
length of the message required to explain the event is equal to the negative logarithm of the
probability of e.

The unit of Shannon information content depends on the base of the logarithm used. For
base-2 logarithms, the unit is bits. Thus, the measure of information in base-2 can be seen
as the length of message in bits required to encode the statement of the event e over a noisy
binary channel (such as the internet).* To further understand Shannon information content
consider, for example, tossing an unbiased coin, giving equally likely outcomes: heads or tails.
The probability of the coin landing on either side is 0.5. Applying Equation 3.1: − log2(0.5) = 1
bit. Therefore, 1 bit of information is required to uniquely state (or encode) the outcome of an
unbiased coin flip.

Another closely-related concept to Shannon information content is Shannon entropy. The
entropy of a random variable X is defined as its average (or expectation of) Shannon information

*The logarithm defined in other bases changes the unit of Shannon’s information content. For instance,
using the natural base-e yields the unit nats or nits, while using base-10 yields digits or hartleys.

3.3. STATISTICAL INFERENCE, MODEL COMPARISON AND SELECTION 37

content: H(X) = E(I(X)). If X is discrete, then Shannon entropy of X takes the form:

H(X) =
∑
∀e∈X

Pr(e)I(e) = −
∑
∀e∈X

Pr(e) log(Pr(e))

When the random variable is distributed continuously, the sum in the above equation is replaced
by an integral:

H(X) =

∫
∀e∈X

Pr(e)I(e)de = −
∫
∀e∈X

Pr(e) log(Pr(e))de

As with Shannon information content, the base of the logarithm indicates the units in which
entropy is measured.

3.3 Statistical Inference, Model Comparison and Selec-

tion

Statistical inference involves arriving at a hypothesis (or a theory) about the underlying dis-
tribution of empirically observed data. However, in many real world settings, the data often
comes from a process that has an unknown true (probability) distribution. Typically, a hy-
pothesis is defined using well-characterised probability distribution(s) (or model(s)) to explain
the observed data. Thus, statistical inference commonly involves comparing a countable set of
well-characterised statistical model(s), and selecting a suitable model that best describes the
observed data, while simultaneously inferring its statistical parameters. In other words, many
real world inference problems are often reformulated as problems of model comparison and
selection, and of parameter estimation of the selected models.

Inferring hypotheses on the given data is not merely a data analysis task, it can potentially
allow predictions about unobserved (future) data, and also facilitate decision making based
on the data to optimise some utility (or objective) function (Oliver and Baxter, 1994). In
this regard, the Bayesian framework provides the foundation of model selection and inference,
supports prediction of unobserved data, allows updating beliefs about the current hypothesis in
light of additional data, and provides a utility function for decision making. Before considering
inference in this Bayesian framework, the notation required to support this discussion is defined.

3.3.1 Notations Supporting Statistical Inference

The rest of this chapter will use the following notations, commonly used in the statistical
inference literature (Wallace, 2005; Wallace and Boulton, 1975; Wallace and Freeman, 1987;
Farr and Wallace, 2002):

Θ denotes the (super)set of all possible hypotheses (also theories/models/parameters).

X denotes the (super)set containing all possible observations of the data.

~θ ∈ Θ denotes a particular hypothesis (theory/model/parameter) from the set Θ. In this chap-

ter, ~θ is used interchangeably with H.

x ∈ X denotes a particular instance of the observed data. In this chapter x is used interchange-
ably with D.

h(~θ) denotes the prior probability density function of ~θ before any data has been observed.
This gives the prior probability Pr(H) for any given hypothesis H.

38 CHAPTER 3. INTRODUCTION TO STATISTICAL INFERENCE

g(~θ|x) denotes the posterior probability density function of ~θ after the data has been observed.
This gives the posterior probability Pr(H|D).

f(x|~θ) denotes the likelihood function. This gives the probability Pr(D|H), of data D assuming
that the hypothesis H is true.

r(x) denotes the marginal (or unconditional, prior) probability function. This gives the uncon-
ditional probability of the data, Pr(D).

j(~θ, x) denotes the joint probability density function. This gives the joint probability of the
hypothesis and the data, Pr(H,D).

3.3.2 Statistical Estimators and Common Methods of Parameter
Estimation

A statistical estimator is a function of the observed data, Θ̂ : X → Θ, that is used to estimate
(guess) an unknown parameter of some statistical model that describes the data. Since this is
a function of the observed data x ∈ X, the estimator Θ̂(x) is the random variable, where the
specific values that this function produces θ̂ = Θ̂(x) are called the point estimates.

For some given data D, let H define some hypothesis, where a hypothesis implies the sup-
porting statistical models (with statistical parameters). The aim is to estimate the parameters
of the hypothesis. The statistical estimator that generates these estimates should possess,
amongst others, the following three key properties (Wallace, 2005):

Invariance to reparametrisation (model reparameterisation invariance): Let the pa-
rameters of the hypothesis H be defined in some Θ-space. Consider any reparameteri-
sation that transforms the parameters (invertibly) to some Φ-space under a one-to-one
mapping, Reparameterise : Θ→ Φ. The estimator is said to be invariant to reparametri-
sation if, for any such transformation, the point estimate in the Φ-space, Φ̂(x), is equivalent
(under the inverse of that transformation) to the point estimate in the Θ-space, Θ̂(x).

Invariance to transformation of the data space (data transformation invariance): Let
the observed data defined in some X-space be invertibly transformed into some Y -space
under a one-to-one mapping, Transform : X → Y . The estimator is said to be invari-
ant to the transformation of the data if the point estimate of the data in the Y -space,
Θ̂(y ∈ Y) is equivalent (under the inverse of that transformation) to the point estimate
of the data in the X-space, Θ̂(x ∈ X).

Zero bias of the estimator: Let ~θ∗ be the true parameter of a statistical model generating
the observed distribution of data f(x|~θ∗). Then the bias of an estimator (with respect

to the true parameter ~θ∗) is defined as the difference between the expectation of the

statistical estimator over the distribution f(x|~θ∗) and the true parameter:

Bias(Θ̂(x), ~θ∗) = E(Θ̂(x))− ~θ∗

For an unbiased (or zero bias) estimator, E(Θ̂(x)) = ~θ∗.

Given these properties, three popular methods of parameter estimation used to address
statistical inference problems are discussed below.

3.3. STATISTICAL INFERENCE, MODEL COMPARISON AND SELECTION 39

Maximum Likelihood Estimation

The maximum likelihood (ML) approach to parameter estimation involves, as the name sug-

gests, choosing an estimate (parameter value) ~θML that maximises the likelihood function f(x|~θ).
The ML estimator is then:

θ̂ML = argmax
∀~θ∈Θ

f(x|~θ)

Intuitively, this amounts to choosing the parameter value that is most likely to have resulted
in the observed data. This estimator is both, model reparameterisation invariant and data
transformation invariant. However, the maximum likelihood estimator is a biased estimator.

Often, when Θ space is continuous, this method involves evaluating the function at its
extremum when d

d~θ
f(x|~θ) = 0. However, this approach is only useful if each ~θ ∈ Θ is equally

probable. In other words, this assumes that the prior density function h(~θ) is uniform. This
is only appropriate when no prior knowledge exists about the distribution of Θ. However,
more generally this assumption is very limiting until the prior probabilities are satisfactorily
accounted for during estimation.

Bayesian Point Estimation of Posterior Mean, Median and Mode

Bayes theorem (Bayes and Price, 1763), as encountered earlier in Section 3.1, is reformalised in
Equation 3.2. This allows restating the degree of belief in an hypothesis in light of new evidence.
That is, the conditional probability of the hypothesis H given the data D is proportional to the
probability of H multiplied by the conditional probability of D given knowledge of H. More
precisely, the general form of Bayes theorem used for the inference problems is:

Pr(H|D) =
Pr(H)× Pr(D|H)

Pr(D)
(3.2)

Expressing the same in terms of the joint probability (Pr(H,D)) by applying the product rule
results in the following:

Joint Pr.︷ ︸︸ ︷
Pr(H,D) =

Prior on H︷ ︸︸ ︷
Pr(H) ×

Likelihood︷ ︸︸ ︷
Pr(D|H)

= Pr(D)︸ ︷︷ ︸
Prior on D

×Pr(H|D)︸ ︷︷ ︸
Posterior

(3.3)

Using the functional notations in Section 3.3.1, the above can be written as:

j(~θ, x) ∝ h(~θ)f(x|~θ) ∝ r(x)g(~θ|x),

or more generally as:

g(~θ|x) ∝ h(~θ)f(x|~θ).

There are several traditional Bayesian methods to summarise (using point estimates) the

posterior distribution g(~θ|x) using this Bayesian formulation:

Mode estimate of the posterior function: This estimate maximises the posterior density func-
tion as:

θ̂mode(g(~θ|x)) = argmax
∀~θ∈Θ

g(~θ|x)

40 CHAPTER 3. INTRODUCTION TO STATISTICAL INFERENCE

Note that the mode of the posterior distribution is not invariant under non-linear trans-
formations of both model parameters and data.� Another issue with this estimator is that
it greedily chooses the peak of the posterior distribution, ignoring the probability mass in
that region; there may be other peaks in the distribution that holds significantly larger
posterior probability mass.

Mean estimate of the posterior function: This estimate gives the expectation of the random
variable Θ on the posterior density function g(~θ|x) as:

θ̂mean(g(~θ|x)) = E(Θ) =

∫
∀~θ∈Θ

~θg(~θ|x)d~θ

As in the case of the mode estimate, this form of estimation is also not invariant under
non-linear transformations of either parameters or the data.

Median estimate of the posterior function: This estimate finds the particular value of the hy-
pothesis that satisfies the following property:

θ̂median(g(~θ|x)) =

∫
∀~θ<θ̂

median(g(~θ|x))
∈Θ

g(~θ|x)d~θ −
∫
∀~θ>θ̂

median(g(~θ|x))
∈Θ

g(~θ|x)d~θ = 0

Unlike the mean and mode estimates above, this form of estimation is indeed invariant
under non-linear transformation of parameters and data. However, this method does not
generalise well to models containing multiple parameters, and can return estimates from
the region of the posterior distribution that have low probability.

Information-Theoretic Methods of Point Estimation

A complementary view to Bayesian point estimation and model selection can be derived using
the notion of information. In the Bayesian framework, this involves replacing probabilities with
the measure of information content. As seen in Section 3.2, the measure of information varies
according to the probability. The landmark work of Shannon (1948) showed that the Shannon
information content (Section 3.2; Equation 3.1) can be defined as the length of the shortest
(optimal) code required to uniquely and losslessly state (communicate, describe, explain) an
event, e, with a probability Pr(e) as:

I(e) = −log(Pr(e))

In the nineteen sixties several researchers independently proposed connections between in-
formation theory and statistical inference (Solomonoff, 1964; Kolmogorov, 1963; Wallace and
Boulton, 1968; Chaitin, 1966). The Minimum Message Length principle (Wallace and Boulton,
1968) gave the first practical demonstration of its application to statistical inference. Wallace
and colleagues subsequent work gave rise to a mature branch of statistical inference relying
on Shannon’s measure of information (Wallace and Boulton, 1968, 1969; Boulton and Wallace,
1973; Wallace and Boulton, 1975; Rissanen, 1978; Wallace and Freeman, 1987, 1992; Allison
et al., 1992; Wallace and Patrick, 1993; Dowe et al., 1996; Wallace, 1998; Wallace and Dowe,
1999; Farr and Wallace, 2002).

�For instance, this thesis uses set of points that can be expressed as Cartesian coordinates (x, y, z) or
equivalently as Spherical coordinates (r, θ, φ). One representation is a non-linear and invertible transformation
of the other.

3.3. STATISTICAL INFERENCE, MODEL COMPARISON AND SELECTION 41

The MML principle provides the basic framework for the research on the structural align-
ment problem presented in this thesis. The fundamental ideas and methodologies behind the
MML principle are briefly explained below. However, for a comprehensive treatment of this
topic, refer to Wallace (2005).

3.3.3 Minimum Message Length Inference

Wallace and Boulton (1968) developed the first information theoretic criterion for inductive
inference and model selection. Minimum Message Length (MML) is a Bayesian framework that
links information theory (Shannon, 1948) and lossless data compression to Bayesian statis-
tics (Bayes and Price, 1763), and provides a practical and reliable way to discriminate between
competing models (or hypotheses), and to select good model(s) (and estimate their parameters)
that explain the observed data.

The MML principle posits that the best model H of the observed data D is the one that can
explain (state) D in the shortest message length. This can be seen from an information-
theoretic restatement of Bayes theorem in Equation 3.3 above. Applying the notion of Shannon
information content (Equation 3.1) to Bayes theorem (Equation 3.3) arrives at:

I(H,D) = I(H)︸ ︷︷ ︸
model-part

+ I(D|H)︸ ︷︷ ︸
data-part

(3.4)

Thus, as a general principle, model selection under the MML framework finding the model
that minimises the two-part message length. The first part is the statement of the hypothesis,
H, which is used to describe the observed data, D. The second part is the statement of the
observed data assuming H to be true.

MML Inference as a Hypothetical Communication Process

MML is best understood as a communication process between a hypothetical transmitter (Alice)
and receiver (Bob) connected over a shannon channel. Alice wishes to encode and send the D
succinctly in such a way that Bob can reconstruct it exactly as Alice observes it. Alice and Bob
agree on a codebook, a rulebook of communication protocols they both agree on. Alice must
then choose a H based on the data. Once this is done, Alice can encode and transmit the data
over a two-part message: in the first, she encodes and transmits the hypothesis to Bob, while in
the second she encodes and transmits the data given the hypothesis and then transmits it. The
two-part message received on Bob’s side should be decodable so that the data can be recovered
without loss. The goal for Alice is to choose a hypothesis such that the transmission of the
data over a two-part message results in the shortest possible message over the entire space of
hypotheses.

While this communication framework deals with encoding and decoding, in practice, no
information is actually transmitted. MML inference deals only with measures of information
and not with the actual mechanics of encoding and decoding. Therefore, MML inference
is only concerned with the Shannon information content of various terms in the two-part
message.

Hypothesis Complexity-versus-Fit Trade-off

Any hypothesis has a certain descriptive complexity. A complex hypothesis (one with more
free parameters) can predict (fit, explain) a greater variety of observed data than a simpler

42 CHAPTER 3. INTRODUCTION TO STATISTICAL INFERENCE

hypothesis (one with fewer free parameters). Therefore, in order to choose the best hypothesis
for any inference problem, one is confronted with a trade-off between hypothesis complexity
and how well it predicts the observations.

The MML principle naturally balances hypothesis complexity with the ability of the hy-
pothesis to accurately describe the data. While explaining a complex hypothesis requires a
long I(H) message, such a hypothesis may be able to describe (fit) the data more concisely,
decreasing the length of the I(D|H) message required to describe the data. Alternatively, as-
serting a simple hypothesis requires a shorter message I(H), but if it is poor at explaining the
data, might increase the length of the message I(D|H) for stating the data. This trade-off
between hypothesis complexity and how well the hypothesis fits the data is perfectly captured
by MML and clearly mirrors the trade-off between coverage and fidelity required to solve the
protein structural alignment problem (see Section 2.2.5).

Precision of Statement Issues

The MML principle has been explored above in very broad terms, without exposing the reader
to many important, subtle and practical issues that arise from its seemingly simple formulation.
Specifically, the lossless communication of a message requires some precision of statement for
the terms involved in the message. Further, the two-part message involves the statement
of statistical parameters (supporting the hypothesis) and the encoding of the data given the
parameters. Both of these (as is normally the case) involve the transmission of real-valued
entities that have also to be stated to a certain precision (otherwise, the message length can be
arbitrarily long if the transmission involves arbitrarily precise real numbers).

For most statistical inference problems, the precision of statement of data (or precision of
measurement) is a property of the data.

Precision of Measurement (PoM)
All continuous data has some amount of measurement error. That is, no continuous data can be
stated exactly to infinite precision. ε denotes the precision to which the data can be measured, a
value that is a property of the data.

On the other hand, the precision of statement of parameters (or precision of parameter values)
must be inferred from the data.

Precision of parameter values (PoPV)
It is important within the MML framework for the chosen model to have all of its param-
eters stated (the model must be fully parameterised). The question then becomes to what
precision those parameters should be stated, since Bob does not know the parameters: that
is, to what PoPV will Alice need to state the parameters in order to minimise the two part
message length.

Therefore, in addition to finding the right model, the MML framework simultaneously needs
to address the problem of finding the PoPV. This precision has an important implication to
the two-part message length (see Equation 3.4): as the precision of statement of parameters
becomes coarse, the first part of the message (parameter-part) shortens, while the second part
of the message (data-part) typically grows, because the coarsely specified parameters do not
explain the data so well. Here arises the non-trivial problem of finding the optimal precision

3.3. STATISTICAL INFERENCE, MODEL COMPARISON AND SELECTION 43

to which parameters must be stated, that most applications of MML must handle (MacKay,
2003).

The following sections explore the details of model selection in the MML framework, in
addition to the treatment of precision of parameter values. This leads to the strict formulation
of MML inference.

Strict Minimum Message Length Inference

Consider the set, X, of all possible data. Alice observes some subset x ∈ X which she wishes
to state over a message. One approach to addressing Minimum Message Length inference
involves discretising the data space X and mapping each observed data x ∈ X to a value
θ̂MML = Θ̂(x) ∈ Θ, which forms the MML estimate of x (Wallace and Boulton, 1975; Wallace
and Freeman, 1987; Farr and Wallace, 2002).�

To establish this discretisation, define the marginal probability of θ̂MML computed in terms
of the sum of marginal probability of a subset of x’s in X as s(θ̂MML) =

∑
∀x s.t. Θ̂(x)=θ̂MML

r(x).
Using this, the two-part message to state some x ∈ X is as follows: the first part transmits
the hypothesis in I(θ̂MML) = − log(s(θ̂MML)) bits; the second part transmits the data given
the hypothesis in I(x|θ̂MML) = − log(f(x|θ̂MML)) bits. However, this two-part message cannot
be decoded by the receiver (Bob) since the encoding of the model parameters in the first part
depends on the specific data x that is being encoded in the second part. To work around
this, the strict minimum message length (SMML) inference aims to minimise, instead, the
expectation of the two-part message length, over all x ∈ X (Farr and Wallace, 2002):

ISMML(θ̂, x) = −
∑
θ̂∈Θ̂

s(θ̂) log(s(θ̂))−
∑
x∈X

r(x) log(f(x|θ̂)).

Thus, the goal of SMML inference is finding the mapping or discretisation Θ̂ : X → Θ that
minimises the above expected message length. The algorithmic complexity issues of undertaking
this discretisation are handled in Farr and Wallace (2002), which proves that SMML inference is,
in general, an NP-hard problem. Hence, this strict formulation of MML on practical inference
problems becomes intractable. Nevertheless, very good approximations of SMML estimates
have been previously proposed (Wallace and Boulton, 1968; Wallace and Freeman, 1987) and
are briefly described in the subsequent section.

Wallace-Freeman Approximation of SMML

Wallace and Freeman (1987) give a quadratic approximation of SMML inference. This is
shown below for a model with a vector of parameters (Oliver and Baxter, 1994). Following
this derivation, several approximations used to simplify the MML two part message length
computation are introduced. Finally, a derivation for a specific model is undertaken after this
as a motivating example.

Consider N observations of identical and independently distributed (i.i.d.) data, x ∈ X,
each with a precision of measurement (PoM) of ε, being modeled using a statistical distribution

with a d-dimensional parameter vector ~θ. Beginning with the general MML statement for the
two-part message length for x using ~θ:

I(~θ, x) = I(~θ) + I(x|~θ) (3.5)

�Note that since the data space is being discretised, this mapping need not be one-to-one between X and
Θ. Often, multiple subsets of data are mapped to a single estimate, θ̂MML.

44 CHAPTER 3. INTRODUCTION TO STATISTICAL INFERENCE

Unlike SMML inference were it is required to discretise the data space X, the approximation
of Wallace and Freeman (1987) considers a discretisation of the parameter space Θ.

Let the precision of the parameters values (PoPV) of ~θ describe a discretised region V(~θ)

of imprecision whose volume is given by V (~θ). Then, considering the message length of the

first part, I(~θ), the Wallace and Freeman (1987) approximation assumes that the prior density

function h(~θ) is constant within the volume of imprecision of the parameters, and is represented
as:

I(~θ) = − log(Pr(~θ)) = − log(V (~θ)h(~θ)) (3.6)

Expanding the set of notation introduced in Section 3.3.1, let the negative log likelihood function
be defined as L(~θ) = − log f(x|~θ). Furthermore, to compute the second part of the message

I(x|~θ), consider its expectation by integrating the likelihood f(x|~θ) in the region corresponding

to V (~θ):

E[I(x|~θ)] = E[− log(Pr(x|~θ))] =
1

V (~θ)

∫
V(~θ)

[
L(~θ + ~ϑ)−N log ε

]
dv

where ~θ + ~ϑ are the set of all parameter values defined by the discretised region V(θ).
The integral above can be approximated by considering the Taylor series expansion of the

negative log likelihood function up to the quadratic term:

E[I(x|~θ)] ≈ −N log ε+
1

V (~θ)

∫
V(~θ)

(
L(~θ) + ~ϑ

∂L(~θ)

∂~θ
+

1

2
ϑ>
∂2L(~θ)

∂~θ∂~θ>
~ϑ

)
dv

≈ −N log ε+
1

V (~θ)

(∫
V(~θ)

L(~θ)dv +

∫
V(~θ)

~ϑ
∂L(~θ)

∂~θ
dv +

1

2

∫
V(~θ)

~ϑ>
∂2L(~θ)

∂~θ∂~θ>
~ϑdv

)

≈ −N log ε+ L(~θ) +
1

2V (~θ)

∫
V(~θ)

~ϑ>
∂2L(~θ)

∂~θ∂~θ>
~ϑ dv (3.7)

Since:
1

V (~θ)

∫
V(~θ)

L(~θ) dv = L(~θ) and
1

V (~θ)

∫
V(~θ)

~ϑ
∂L(~θ)

∂~θ
dv = 0

Substituting Equations 3.6 and 3.7 into Equation 3.5 gives:

I(~θ, x) ≈ − log(V (~θ)h(~θ))−N log ε+ L(~θ) +
1

2V (~θ)

∫
V(~θ)

~ϑ>
∂2L(~θ)

∂~θ∂~θ>
~ϑdv (3.8)

where ∂2L(~θ)

∂~θ∂~θ>
is the matrix of second order differentials of L(~θ) which is also known as the observed

Fisher information matrix (Casella and Berger, 2001). However, this matrix is dependent
on observed data of which the receiver has no knowledge. To avoid an infinite regress of
deciding the precision of the parameters based on the data, replace the observed Fisher with
the expected Fisher, F(~θ), as per Equation 3.9, thus making the message decodable, as V (~θ)
will be independent of the observed data.

F(~θ) =
∂2L(~θ)

∂~θ∂~θ>
≈ E

[
∂2L(~θ)

∂~θ∂~θ>

]
(3.9)

3.3. STATISTICAL INFERENCE, MODEL COMPARISON AND SELECTION 45

This gives:

I(~θ, x) ≈ − log(V (~θ)h(~θ))−N log ε+ L(~θ) +
1

2V (~θ)

∫
V(~θ)

~ϑ>F(~θ)~ϑdv

Since F(~θ) is a real square symmetric matrix, its eigen decomposition is given as: F(~θ) = SΛS>,
where Λ is a d× d diagonal matrix of eigenvalues. Note that Λ> = Λ. Therefore, the integrand
in the above message length equation can be simplified by defining the following transformation:

~ϑ>F(~θ)~ϑ = ~ϑ>SΛS>~ϑ

= BΛB>, where B = ~ϑ>S

= BΛ
1/2Λ

1/2B>, where Λ
1/2Λ

1/2 = Λ

= y>y, where y = Λ
1/2B>

Therefore, y in terms of ~ϑ is:
y = Λ

1/2S>~ϑ (3.10)

Let p(~φ) be the transformed prior density of h(~θ), and let V ′(~φ) be the transformed volume of

uncertainty (imprecision) associated with V (~θ):

p(~φ) = h(~θ)
dV (~θ)

dV ′(~φ)
(3.11)

Thus, in φ-space, the message length becomes:

I(~θ, x) ≈ − log(V ′(~φ)p(~φ))−N log ε+ L(~θ) +
1

2
E[y>y] (3.12)

where the model has two parameters, the expected value of y>y can be expressed in terms of
the d-dimensional optimal quantising lattice constant (Conway and Sloane, 1984), κd, as in the
following:

E(y>y) = dκdV
′(~φ)

2
d (3.13)

Substituting Equation 3.13 into the expression for the message length gives:

I(~θ, x) ≈ − log(V ′(~φ)p(~φ))−N log ε+ L(~θ) +
d

2
κdV

′(~φ)
2
d (3.14)

At this point it is necessary to find the optimal discretisation of the prior distribution, or PoPV
(V (~θ)) that minimises I(~θ, x). This is achieved by differentiating Equation 3.14 with respect

to V ′(~φ) and setting it to zero:

∂I(~θ, x)

∂V ′(~φ)
= − 1

V ′(~φ)
+ κdV

′(~φ)
2
d
−1 = 0

This can be solved as:

1

V ′(~φ)
= κdV

′(~φ)
2
d
−1

V ′(~φ) = κ
− d

2
d

46 CHAPTER 3. INTRODUCTION TO STATISTICAL INFERENCE

Substituting this optimal value for V ′(~φ) into Equation 3.13 gives:

E(y>y) = d

Thus, from Equation 3.12, the message length expression becomes:

I(~θ, x) ≈ − log(V ′(~φ)p(~φ))−N log ε+ L(~θ) +
d

2

From Equation 3.10, V ′(~φ) can be expressed in terms of V (~θ):

V ′(~φ) = Jacobian(Λ
1/2S>)V (~θ) = Jacobian(Λ

1/2)V (~θ)

=
d∏
i=1

√
λi V (~θ) =

√√√√ d∏
i=1

λi V (~θ)

=

√
det(F(~θ)) V (~θ)

Therefore:
dV (~θ)

dV ′(~φ)
=

1√
det(F(~θ))

which, substituted into Equation 3.11, gives:

p(~φ) =
h(~θ)√

det(F(~θ))

Finally, substituting this and the optimal value of V ′(~φ) into the expression for the message
length gives the Wallace-Freeman approximation for the message length with two parameters:

I(~θ, x) ≈ d

2
log(κd)− log(h(~θ)) +

1

2
log(det(F(~θ)))︸ ︷︷ ︸

first part: I(~θ)

−N log ε+ L(~θ) +
d

2︸ ︷︷ ︸
second part: I(x|~θ)

(3.15)

The Wallace and Freeman (1987) MML estimate is, therefore, given by minimising Equa-
tion 3.15.

Derivation of Wallace and Freeman (1987) Approximation of Parameters for the
Normal Distribution

This section reproduces, from Wallace (2005), the derivation of the Wallace-Freeman approxi-
mation of data modelled using a Normal distribution with unknown parameters for mean, µ,
and standard deviation, σ. Let the data be ~x = x1, x2, ..., xN , and likelihood function be:

f(~x|µ, σ) =
N∏
i=1

1

σ
√

2π
exp

(
−

N∑
i=1

(xi − µ)2

2σ2

)

3.3. STATISTICAL INFERENCE, MODEL COMPARISON AND SELECTION 47

Assume that each datum is measured to the precision (PoM) of ε and ε� σ. The negative log
likelihood function is:

L(µ, σ) = − log f(~x|µ, σ) =
N

2
log(2π) +N log σ +

N∑
i=1

(xi − µ)2

2σ2

The first and second derivatives of the negative log likelihood function with respect to the
parameters are:

∂L
∂µ

= −
N∑
i=1

(xi − µ)

σ2

∂2L
∂µ2

=
N

σ2

∂L
∂σ

=
N

σ
− 1/σ3

N∑
i=1

(xi − µ)2

∂2L
∂σ2

= −N
σ2

+
3

σ4

N∑
i=1

(xi − µ)2

∂2L
∂µ∂σ

= (1/σ2)
N∑
i=1

(xi − µ)

For the Normal distribution, E[xi − µ] and E[(xi − µ)2] are 0 and σ2 respectively. Thus,

E
[
∂2L
∂σ2

]
= −N

σ2
+ (σ3σ4)Nσ2 = 2

N

σ2

E
[
∂2L
∂µ∂σ

]
= 0

F(µ, σ) =

[
N
σ2 0
0 2N

σ2

]
det(F(µ, σ)) =

2N2

σ4

Substituting this and the above expression for L into Equation 3.15 gives:

I((µ, σ), ~x) = log(κ2)− log(h(µ, σ)) +
1

2
log

(
2N2

σ4

)
+
N

2
log(2π)

+ N log σ −N log ε+
N∑
i=1

(xi − µ)2

2σ2
+ 1 (3.16)

Assuming that µ and σ have independent priors. With little prior knowledge, assume there is
no reason to prefer any particular location for the distribution and, therefore, the prior density
for µ is uniform within a range, Rµ. Furthermore, assume a bland prior on σ that expects σ
to be small, with a density proportional to 1

σ
. That is, log σ has a uniform prior density over a

range, Rσ. In this scenario:

h(µ, σ) =

(
1

Rµ

)(
1

σRσ

)

48 CHAPTER 3. INTRODUCTION TO STATISTICAL INFERENCE

Thus,

− log(h(µ, σ)) = − log

((
1

Rµ

)(
1

σRσ

))
= logRµ + log σRσ

= log σ + logRµRσ

Which, substituted into Equation 3.16 above and letting v2 =
∑

n(xn − µ)2, gives:

I((µ, σ), ~x) = log(κ2)+log σ+logRµRσ+
1

2
log

(
2N2

σ4

)
+
N

2
log(2π)+N log σ−N log ε+

v2

2σ2
+1

Note that the unbiased estimates for the mean and standard deviation are: µ′ = 1
N

∑
n xn, and

σ′ =
√

v2

(N−1)
. Which, substituted into the above equation gives:

I((µ, σ), ~x) = log(κ2) + logRµRσ +
1

2
log(2N2) +

1

2
(N − 1) log

(
v2

N − 1

)
+

N

2
log

(
2π

ε2

)
+
N − 1

2
+ 1 (3.17)

Equation 3.17 is the expression for the message length of N data points modeled by a normal
distribution using the Wallace-Freeman approximation for unifom priors. The MML estimates
for µ and σ that minimise I((µ, σ), ~x) correspond to the solutions of ∂I

∂µ
= 0 and ∂I

∂σ
= 0. These

are:

µ̂MML =
1

N

N∑
i=1

xi and σ̂MML =
1

N − 1

N∑
i=1

(xi − µ̂)2

MML Inference When an Explicit Fisher Information Matrix for a Hypothesis
Cannot be Defined

The previous section described how model parameters can be estimated using the quadratic
approximation method of Wallace and Freeman (1987). This method is directly applicable
when the hypotheses are backed by statistical models with real-valued parameters. However,
not all statistical inference problems define hypotheses of this kind. For instance, consider the
problem of hierarchical classification of N items with K attributes. A hierarchical classification
hypothesis will have to specify (at least) the following five pieces of information (Wallace and
Boulton, 1968):§

1. The number of classes.

2. The hierarchical tree of these classes.

3. The model (or distribution function) for each class in the classification.

4. The class to which each of the N items belong (and this could be either a deterministic
or a probabilistic membership depending on the type of the classification problem).

§Recall from Section 3.2, that information is additive.

3.4. CODEWORDS, PREFIX-FREE CODES ANDUNIVERSAL CODES FOR INTEGERS49

5. The deviations of each item from its assigned class in the proposed/hypothesised classi-
fication.

Comparing these enumerated items against the MML’s two-part message framework (see Equa-
tion 3.4), one can conclude that the first three items form the first part (model-part) of the
message, while the last two items contribute to the second part (data-part) of the message. It
may be true that each item corresponding to the classification problem (or any inference problem
in general) can individually be supported by statistical distributions (with unknown param-
eters) and, hence, their expected Fisher information matrix may be computable and applied
only individually for each item (information term). However, finding the Fisher information
collectively for all the terms involved in the hypothesis can be intractable, if not impossible, in
some cases. Therefore, in such cases, the MML objective is framed to minimise the two-part
message by individually accounting for the message length terms of all its constituent pieces
of information (Wallace and Boulton, 1968). Therefore, the MML inference in such cases is
done by breaking down each of the two-part message into individual terms (message blocks),
whose Shannon information content are computed separately, under the objective that the total
(as sum-of-the-parts) message length is minimised. The problem of structural alignment
considered in this thesis falls into this category.

3.4 Codewords, Prefix-Free Codes and Universal Codes

for Integers

While the MML framework requires only the measure of information of various terms (and does
not actually require any encoding or decoding scheme), for completeness, this introduction of
MML is concluded by providing a brief overview of codes and encoding.

Over a binary Shannon channel, each message length term is a long sequence of bits con-
taining many codewords. Each codeword is bit string (often of variable length) containing
an encoded piece of information that the sender (Alice) wants to transmit, losslessly, to the
receiver (Bob). The length of a codeword is simply the number of bits that go into forming
that codeword. Therefore, a lossless message is a concatenation of a set of codewords that is
decodable at the receiver’s end.

Information theorists and computer scientists are interested in constructing codewords for
a set of possible symbols generated from some source that is producing these symbols. Each
codeword should exhibit the following properties:

1. Uniquely encode a symbol,

2. Contain enough information so that the encoded symbol is decodable, and

3. Be non-redundant so that the code is efficient (or contain more information than is re-
quired).

As seen in Section 3.2, theoretically, the shortest lossless code for a symbol is given by the
negative logarithm of the probability of that symbol. In practice, the length of the codewords
vary according to the entropy in many useful codes. Such codes are not only of variable-length
(dictated by the statistical model supporting the encoding of the symbols) but also prefix-free.
A prefix-free code has the property that no two codewords share a common prefix bit string.¶

¶Prefix-free codes are uniquely decodable, but not all decodable codes are prefix-free.

50 CHAPTER 3. INTRODUCTION TO STATISTICAL INFERENCE

The Huffmann code is an optimal (non-redundant), variable-length, prefix-free code (Huff-
man, 1952). The most common use of prefix-free codes is for encoding integers (or any countable
set of things over an infinite range).

Provided the range of values to be expressed is known and each value has a uniform prob-
ability, the optimal code length to state any integer in the range is simply the logarithm of
the size of the range. However, if the range of values is not known, an alternative method is
required. Elias (1975); Rissanen (1983) and Wallace and Patrick (1993) give methods to state
positive integers from an unknown range. Each essentially chooses a variable length integer
representation and transmits it. However, since the range is unknown, the length of the value
being transmitted should be transmitted first, and the length of that length and so on. This
regression, however, decreases in size very rapidly as it takes the form:

log ∗(n) = log(n) + log(log(n)) + · · ·

for all positive terms, where n is the size of the original integer representation to transmit.
Rissanen (1983) gives:

Iinteger(n) = log ∗(n) + log2(2.865) (3.18)

where 2.865 is a normalising constant such that the sum of all values from the distribution
is 1:

∑∞
n=1 2−Iinteger(n) = 1.0. In some cases, when using this encoding scheme, the range of

integers that must be encoded begins at zero: 0 ≤ n ≤ ∞. In this case, Iinteger(n) is defined
as: Iinteger(n) = log ∗(n + 1) + log2(2.865). This method of variable-length encoding for
integers is used extensively throughout this thesis.

3.5 Summary

Statistical inference is the process of selecting a hypothesis based on some observed data, facil-
itating the prediction of unobserved data. In this context, a hypothesis is a fully parameterised
statistical model. The parameters of the statistical model are estimated using an estimator that
should have at least the three key properties of: invariance to reparameterisation, invariance to
transformation of the data space, and zero bias. Fitting these criteria, The Minimum Message
Length (MML) framework for inductive inference provides a practical, reliable, and objective
method for model selection. MML does this by linking Bayesian statistics and information
theory with data compression. The next chapter will present a method for applying MML
to the problem of selecting the best protein structural alignment hypothesis. This method is
grounded in rigorous statistical methods and lossless data compression.

Chapter 4

A Framework for Assessing Alignment
Quality Using Information Theory

“We can only see a short distance ahead, but we can see plenty there
that needs to be done.”

— A. M. Turing (1950)

This chapter presents an MML based framework for assessing protein structural alignment
quality. This framework treats a structural alignment as an instance of the general class of
inference problems, where an alignment is a hypothesis explaining the structural relation-
ship between two proteins. Each alignment hypothesis is seen as an attempt to explain the
coordinate data of the pair of proteins. The explanatory power of each alignment is then
quantified, using principles of information theory, as the amount of lossless compression
obtained from encoding the coordinate data of the proteins using the knowledge of the
correspondences provided by the alignment. This framework is then benchmarked, using a
large set of SCOP domain pairs, against other popular structural alignment scoring func-
tions. Additionally, a set of alternative alignments suggested by Zu-Kang and Sippl (1996),
which are ambiguous in terms of RMSD and number of correspondences, are examined
in detail. Finally, the level of agreement between scoring functions on the SCOP data is
quantified and found to be minimal, except when the scoring functions are closely related.
This confirms the findings of Kolodny et al. (2005); Hasegawa and Holm (2009); Sippl and
Wiederstein (2008); Slater et al. (2013) and Ma and Wang (2014) which indicate that the
current state-of-the-art structural alignment programs produce contradictory results.

This chapter is based on the paper: Collier, J. H., Allison, L., Lesk, A. M., Garcia de
la Banda, M., Konagurthu A. S. (2014). A new statistical framework to assess structural
alignment quality using information compression, Bioinformatics 30(17): i512–i518.

51

52 CHAPTER 4. AN MML FRAMEWORK FOR ASSESSING ALIGNMENT QUALITY

4.1 Introduction

A
s introduced in Section 2.2, a pairwise alignment is an order-preserving assignment of one-
to-one correspondences between the amino acids of two proteins. While alignments can

be computed based on sequence information alone, structural alignments (which are computed
based on the conformational similarity) are generally accepted to be more reliable, since struc-
ture changes more conservatively than sequence in the evolution of protein domains (Richard-
son, 1981; Chothia and Lesk, 1986; Murzin, 1998; Edwards and Deane, 2015). Indeed, struc-
tural alignments are often used as the standard by which to judge the quality of sequence
alignments (Mizuguchi et al., 1998; Walle et al., 2005; Edgar, 2010).

The problem of aligning protein sequences is very well understood: many rigorous statistical
models have been proposed to quantitatively assess sequence alignment quality (Karlin and
Altschul, 1990; Altschul, 1991; Allison et al., 1992). This has, in turn, helped standardise the
task of measuring sequence alignment quality and, thus, the task of generating meaningful
sequence alignments. In fact, it has been argued that newer sequence alignment methods yield
diminishing (if any) improvements, in so far as an evolutionary relationship can be inferred
from sequence information alone (Edgar, 2004).

The mature statistical basis of sequence alignments stands in stark contrast to the current
state of the art for structural alignment methods. The last four decades have seen the develop-
ment of many methods aimed at producing biologically meaningful structural alignments, with
the number of new methods estimated to be doubling every five years (Hasegawa and Holm,
2009). Several comparative studies have observed many inconsistencies and paradoxes when
comparing the alignments generated by existing methods. Noteworthy among these studies
are those by Kolodny et al. (2005); Hasegawa and Holm (2009); Sippl and Wiederstein (2008);
Slater et al. (2013); and Ma and Wang (2014). A common theme emerging from all of these
studies is the need for a systematic framework to asses the quality of structural alignments.
While a handful of quantitatively rigorous statistical models for structure comparison have been
proposed for this (for example, see Levitt and Gerstein (1998)), there is no consensus regarding
their usefulness.

Guided by good biological insights, current structural alignment methods define a scoring
function to quantify the structural alignment quality. This has traditionally been achieved by
combining the contributions of a small number of important criteria into an easy-to-compute
scoring function, as seen in Section 2.2.5. Broadly, in their different manifestations, these cur-
rent scoring functions use two key criteria: coverage and fidelity. Typically, coverage measures
the number of correspondences in an alignment and, in some cases, also considers the number
of gaps. Fidelity, measures how similarly positioned the aligned residues are. Fidelity is com-
monly (but not always) based on the root-mean-square deviation (RMSD) computed after the
least-squares superposition of corresponding residues is found (see Section 2.2.3).

To search for the best structural alignment, the goal of alignment programs is to simultane-
ously maximise coverage and fidelity. However, these two objectives are in direct conflict with
each other (Irving et al., 2001). Most of the proliferation of quality scores for protein structural
alignments arise from attempts to reconcile this conflict, with scoring functions differing mainly
in how they make the trade-off between these two criteria. This has lead to a situation where
existing scoring functions produce conflicting results, even when aligning structures that have
only moderately diverged in evolution (Kolodny et al., 2005; Hasegawa and Holm, 2009; Slater
et al., 2013). Since this traditional approach to formulating a scoring function has been explored
extensively over the last four decades, further development along the same methodological lines
is unlikely to provide any major breakthrough.

4.2. REVIEW OF POPULAR ALIGNMENT QUALITY MEASURES 53

In this chapter, a radically new approach to assessing the quality of a protein structural
alignment is proposed. This approach uses the information-theoretic Minimum Message Length
(MML) (Wallace and Boulton, 1968; Wallace, 2005) criterion. This method has a statistically
rigorous foundation and it overcomes the reliance of existing approaches on formulating an
ad hoc trade-off between coverage and fidelity. This MML based method, as explained in
Section 4.3, can make a natural and objective trade-off between these two objectives. This
chapter is best contextualised using the background information for the structural alignment
problem provided in Section 2.2.2 and that for MML inference provided in Section 3.3.

4.2 Review of Popular Alignment Quality Measures

This chapter uses nine of the most widely accepted structural alignment scoring functions for
benchmarking: DALI z-score (Holm and Sander, 1993), GDT TS and LGA S3 (Zemla, 2003),
MI and SI (Kleywegt and Jones, November 1994; Kolodny et al., 2005) SAS (Subbiah et al.,
1993), GSAS (Kolodny et al., 2005), STRUCTAL score (Subbiah et al., 1993; Gerstein and Levitt,
1998; Levitt and Gerstein, 1998), and TM-Score (Zhang and Skolnick, 2005b). While these
scoring functions were introduced in Section 2.2.5, they are described in more detail below as
this is necessary to fully analyse the results presented in Section 4.8. For some of the measures
described below, the criteria for statistical significance is unclear. However, a method such as
that used by Holm and Sander (1998) or Levitt and Gerstein (1998) to compute an empirical
z-score is widely applicable to all alignment methods. As in Table 2.2, coverage and fidelity
terms will be highlighted in blue and red respectively.

DALI score introduced the concept of elasticity based on the alignment of distance matrices
(see Section 2.2.4). The score is intended to compensate for plastic deformation in structures by
using a relative intra-structure distance between Cα atoms, rather than the distances between
corresponding residues after least-squares superposition. The formulation of the DALI score is
as follows:

DALI score =
Ne∑
i=1

Ne∑
j=1

{
ΘE − ‖d

S
ij−dTij‖
d∗ij

e(d
∗
ij/α)2

, i 6= j

ΘE, i = j

In this formulation, Ne is the number of correspondences, i and j are indexes of the ith and
the jth pair of corresponding residues, dS and dT are the intra-protein distance matrices for
proteins S and T , ΘE is a similarity threshold, set to 0.2, allowing for deviations between
adjacent matched secondary structural elements, and α = 20Å, is an empirical value for the
size of a typical domain. Each matrix cell in dS and dT contains the intra-structural distance
between the residues within a structure, where d∗ij is the average of distance between the ith

and jth corresponding Cα atoms in S and T : d∗ij = 0.5(dSij + dTij). The DALI score evaluates
coverage by summing the score over all corresponding pairs in S and T , and fidelity by taking
the difference in intra-residue distances between the two structures.

The DALI program, which uses DALI score to evaluate structural alignments, defines an
empirical, length-independent z-score to evaluate the statistical significance of an alignment.
Given a pair of protein structures, 〈S, T 〉, with lengths, |S| and |T |, a length term of L =

54 CHAPTER 4. AN MML FRAMEWORK FOR ASSESSING ALIGNMENT QUALITY√
|S| × |T | is first computed. Using this, the DALI z-score is defined as follows:

L′ = 7.95 + 0.71L− 0.000259L2 − 1.92× 10−6L3

z− score =
DALI score− L′

0.5× L′

An alignment between a pair of structures that share a similar fold or topology are usually
assigned a DALI z-score greater than 2 (Holm and Sander, 1998). The z-score is measured
as the number of standard deviations from the mean of the distribution of DALI scores from
an all-vs.-all comparison. This value is theoretically unbounded. As the DALI z-score is a
transformation of the raw DALI score and a measure of significance, it will be used as bench-
mark alignment quality measure instead of the raw DALI score. Without accounting for the
construction of the distance matrices, the DALI score is a quadratic, O(N2

e), time operation.

STRUCTAL score (Subbiah et al., 1993; Gerstein and Levitt, 1998; Levitt and Gerstein, 1998)
was developed to outperform methods relying on intra-protein distance matrices such as DALI

(above). The STRUCTAL score measures fidelity as the distances, δ’s, between corresponding
Cα atoms. Alignment coverage is indirectly accounted for by summing over all corresponding
residues, and also more directly, by subtracting the number of gaps (Ng) from the score. The
STRUCTAL score has the following form:

STRUCTAL score =
Ne∑
i=1

M

1 + (δi/d0)
2 − 10Ng

In the above equation, Ne is the number of assigned correspondences, M is the maximum score
given to any given correspondence which is empirically defined to be 20Å, d0 is a threshold dis-
tance which is set to 5Å. The range of values from the STRUCTAL score is unbounded. Though
Levitt and Gerstein (1998) provide a method for computing a z-score (see Table 2.2), no thresh-
old for similarity is set. Therefore it is unclear what values of the STRUCTAL score constitute a
statistically significant alignment. It is easy to see from its definition that the STRUCTAL score

is a linear, O(Ne), time operation in the number of correspondences.

TM-Score (Template Modelling Score; Zhang and Skolnick (2004)) is a modification of the
STRUCTAL score. TM-Score attempts to remove the dependence on the length of the protein
chains being aligned. It defines a normalisation constant, d0, as a function of the length of the
largest structure: d0 = 1.24 3

√
max(|S|, |T |)− 15− 1.8. The constants are obtained empirically

in order to ensure consistent length normalisation. The formulation is similar to that of the
STRUCTAL score above:

TM-Score =
1

min(|S|, |T |)

Ne∑
i=1

1

1 + (δi/d0)
2

In this equation, Ne is the number of assigned correspondences, δi is the distance between the
ith pair of corresponding Cα atoms after least-squares superposition. The authors of TM-Score
do not clearly define a threshold for statistical significance (Xu and Zhang, 2010). However, a
TM-Score larger than 0.3 is said to have a p-value of less than 0.001, and a TM-Score greater
than 0.5 is said to come from alignments of structural pairs in the same fold (Xu and Zhang,

4.2. REVIEW OF POPULAR ALIGNMENT QUALITY MEASURES 55

2010). The time complexity of TM-Score is linear in the number of equivalences: O(Ne).

GDT TS (Global Distance Test: Total Score; Zemla (2003)) is a score originally designed for use
in measuring the quality of structures predicted from sequence. GDT TS measures the average
number (coverage) of well-fitting residues (fidelity) as a percentage of the total number of
correspondences (Ne). ‘Well-fitting’ in this case means the corresponding pairs of Cα atoms
with distances (after least-squares superposition) below a set of distinct pre-specified thresholds
which are set to 1Å, 2Å, 4Å, and 8Å. There is an alternative definition of the global distance
test (GDT) measure, with tighter distance thresholds, called GDT high accuracy (GDT HA). In the
high accuracy version, the distance thresholds are halved to: 0.5Å, 1Å, 2Å, and 4Å. GDT TS

takes the following formulation:

GDT TS = 100×
∑4

i=1

Nδi≤Ci
Ne

4
, Ci ∈ {1.0, 2.0, 4.0, 8.0}Å

In the above equation Nδi≤Ci is the number of correspondences superimposed with a distance
below a threshold, Ci ∈ {1.0, 2.0, 4.0, 8.0}Å. The result is normalised such that the range of
possible values is between 0 and 100. However, the criteria for determining the statistical signif-
icance for an alignment is unclear. GDT TS requires a least-squares superposition which can be
accomplished in O(Ne) time, and the count of well-fitting correspondences takes O(Ne) time.
Therefore, GDT TS is a linear, O(Ne) time computation.

LGA S3 (Local Global Alignment Score; Zemla (2003)) is also designed for measuring the quality
of structures predicted from sequence. LGA S3 is a weighted combination of two other scoring
functions. LGA S3 simply provides these two scoring functions parameters in the form of a set
of increasing distance thresholds, D, for the distance between corresponding Cα atoms. LGA S3

then weights the results. In practise, this means that tighter (smaller) distance threshold
parameters are given greater weight. The weighting function, W , takes the following form:

W (F, D) =

∑|D|
i=1

|D|−i+1
|D| F(Di)

(1 + |D|)× |D|/2
(4.1)

In this equation, F is one of the two scoring functions (discussed specifically below) used by
LGA S3, and D is a set of increasing distance thresholds. The final result is normalised based on
the number of thresholds, |D|. The set of distance thresholds is iterated over, at each iteration
a threshold is provided, as a parameter, to F and the result is weighted (between 0 and 1). The
weighting becomes smaller for each iteration, as the thresholds become larger. For example, if
D contains 10 thresholds, on the first iteration the result from F will be given the weight 1.0.
On the 5th iteration the assigned weight will be 0.6, and on the final iteration the weight will
be 0.1.

The two scoring functions used by LGA S3 are called GDT (Global Distance Test, which
provides the global aspect of the score) and LCS (Longest Continuous Segments, which provides
the local aspect of the score). The definition of GDT is similar to that of GDT TS as described
above. Instead of a set of threshold parameters, only one, t, is provided at a time:

GDT(t) = 100× N δi≤t

Ne

56 CHAPTER 4. AN MML FRAMEWORK FOR ASSESSING ALIGNMENT QUALITY

LCS computes the longest set of contiguous correspondences (with intervening gaps) that
superimpose below a given threshold. This can be defined mathematically by letting M be the
set of all possible sets of contiguous correspondences. Then Mi is a particular set of contiguous
correspondences, and Mij is the jth correspondence in the ith contiguous set of correspondences.
Using this notation, LCS can be defined as:

LCS(t) = max({‖Mi‖ | ∀j,Mij < t}) ∀Mi ∈M

In this equation, t is a threshold parameter. Sets of contiguous correspondences in M are
selected if they match the condition that every correspondence in the set, Mi, is less than the
threshold. The length of longest of the sets that match this condition is the result of the LCS

scoring function.
Finally, LGA S3 combines GDT and LCS, using the weighting function (W , see Equation 4.1

above) with a user defined weight, w, as follows:

LGA S3 = w ·W (GDT, {0.5, 1.0, . . . , 10.0}) + (1− w) · S(LCS, {1.0, 2.0, 5.0})

LGA S3 first applies the weighting function, W , as defined above to the GDT scoring function
with the set of thresholds, Ci = {0.5, 1.0, . . . , 10.0}. Then the weighting function is applied to
the LCS scoring function with the set of thresholds, Ci = {1.0, 2.0, 5.0}. The results of these are
summed according to the user defined weighting parameter, w, which has a range of 0 ≤ w ≤ 1.
The range of values from LGA S3 is 0 to 100. However, the criteria for determining the statistical
significance for an alignment is unclear.

The time complexity of LGA S3 is bound by the computation time for LCS and GDT TS. As
discussed above, GDT TS takes linear time, O(Ne). The time complexity of LCS is quadratic in
the number of correspondences, O(N2

e) because it needs to find all contiguous corresponding
segments. There are a fixed constant number of thresholds to iterate over, therefore, the time
complexity of LGA S3 is quadratic in the number of correspondences, O(N2

e).

SAS (Structural Alignment Score; Subbiah et al. (1993)) and GSAS (Gapped Structural Align-
ment Score; Kolodny et al. (2005)) were devised as independent measures of alignment quality
to be used for the benchmarking of many protein structural alignment programs. This bench-
marking was carried out by Kolodny et al. (2005). The SAS makes a simple trade-off between
the fidelity as measured by the RMSD after least-squares superposition, and the coverage as
measured by the number of assigned correspondences as follows:

SAS =
100× RMSD

Ne

GSAS extends SAS in order to account for gaps by subtracting the number of gaps (Ng) from the
coverage term. In effect, this penalises gaps in the alignment. In the case where the number
of gaps is larger than the number of matches, GSAS concludes that the alignment is poor and
assigns it the worst possible score: 99.9. For all cases where Ne ≥ Ngaps, GSAS is defined as:

GSAS =
100× RMSD

Ne −Ng

The best possible alignment is given a cost of 0 from both SAS and GSAS, there is no upper
bound for SAS. The worst possible score for GSAS is 99.9 However, the criteria for determining
the statistical significance for an alignment is unclear. The time complexity for both SAS and

4.3. STRUCTURAL ALIGNMENT AS AN INDUCTIVE INFERENCE PROBLEM 57

GSAS is linear in the number of correspondences: O(Ne). This is due to the computation needed
for a least-squares superposition (see Section 2.2.3).

MI and SI (Match Index and Similarity Index; Kleywegt and Jones (November 1994)) were
devised for use by the LSQMAN (Kleywegt, 1996) alignment program. Along with GSAS above,
these scores are also used as independent measures for the evaluation of protein structural
alignment methods (Kolodny et al., 2005). SI has a similar formulation to SAS with the same
coverage and fidelity terms:

SI =
min(|S|, |T |)× RMSD

Ne

MI is a normalised score, taking values between 0 and 1. Following the notation of Kolodny
et al. (2005), MI is defined to be 1− the original version of the score. In this sense, values of
MI closer to 0 indicate better alignments. The formulation takes the following form:

MI = 1− 1 +Ne

(1 + w × RMSD)(1 + min(|S|, |T |))

In this equation, w is a user defined weighting parameter. Kleywegt and Jones (November
1994) suggest values for w in the range of 0.1 to 1. Kolodny et al. (2005) use the specific value
of w = 2/3, and this value is also used throughout this thesis. The criteria for determining the
statistical significance for an alignment using either of these measures is unclear. The time
complexity for both SI and MI is bounded by the computation of the RMSD term, which takes
O(Ne) time.

Each of the protein structural alignment scores discussed above treat coverage and fidelity
in ad hoc terms. The next section will present a new way of thinking about the alignment
problem, where a statistically rigorous foundation is built on information theory and statistical
inference.

4.3 Structural Alignment as an Inductive Inference Prob-

lem

The goal of inductive inference is to propose a theory (or hypothesis) that is best able to explain
the observed data. The selection of the best structural alignment fits naturally into the general
class of inference problems, since a structural alignment is a hypothesis that attempts to explain
the residue-residue relationships between protein structures whose observed data are the 3D
atomic coordinates.

MML (Wallace and Boulton, 1968; Wallace, 2005) provides a practical information-theoretic
criterion for hypothesis selection based on observed data (see Section 3.3.3). A framework based
on MML is used in this chapter to formulate an objective assessment criterion for structural
alignment quality, one that can reliably differentiate between the quality of competing align-
ments. As explained in Section 3.3.3, MML attempts to transmit, losslessly, the observed data
using a hypothesis. The shorter the combined two-part (hypothesis + data) message is, the
more favourable the hypothesis is regarding the data. Conceptually, this transmission occurs
between some hypothetical transmitter and receiver. However, no actual encoding or transmis-
sion is required in order to compute the length of the two-part message. The data here are the

58 CHAPTER 4. AN MML FRAMEWORK FOR ASSESSING ALIGNMENT QUALITY

3D Cα atomic coordinates of a pair of protein structures: 〈S, T 〉,* and the hypothesis is the
alignment, A.
Two possible scenarios arise from this description:

(1) If the two structures are unrelated to each other, one cannot do better than to encode
and transmit the information of the two structures independently, one after another.
That is, knowledge of one structure does not inform the receiver about the other and,
thus, knowledge of the atomic coordinates in S cannot be used to compress the atomic
coordinates in T . This form of independent transmission is called the null model message.

(2) On the other hand, if the two structures are related (i.e.,, if there is a meaningful align-
ment between the two), then knowledge of the coordinates in S informs the receivers
expectations of the coordinates in T . The more closely related the structures, the more
information one reveals about the other. The transmitter can therefore use this similarity
to compress the coordinates in T using what the receiver already knows about the coordi-
nates in S. In order for the receiver to decode the coordinates in T losslessly (i.e., to the
precision to which the transmitter sees the original data), they will require the coordinates
in S plus the proposed relationship (i.e.,, the structural alignment) to T . This allows the
transmitter to encode T more concisely than stating T using a null model. Herein, this
form of transmission will be referred to as the related model (R-model) message.

This MML framework for structural alignment is intuitive. If the proposed alignment re-
lationship is a poor one, then the encoded R-model message will be inefficient (i.e., long).
Alternatively, if the alignment relationship is a good one, then the R-model message length
becomes efficient (i.e., short). Therefore, the total message length of the lossless transmission of
coordinate data using an alignment hypothesis forms an excellent measure to assess the quality
of this structural alignment. It follows that the best structural alignment is the one with the
shortest total two-part message length of lossless transmission.

4.3.1 An Information Measure of Structural Alignment Quality

Formally, let A denote some alignment between the coordinate data of a pair of protein struc-
tures, 〈S, T 〉. The proposed measure estimates the Shannon information content (Shannon
(1948); see Section 3.2) which states that, given an event E with probability Pr(E), the infor-
mation content of E is − log2(E) bits.

In this context, the information content (or length) pf the null model message, where S and
T are assumed to be unrelated can be simply stated as:

Inull(〈S, T 〉) = − log2(Pr(S)Pr(T))

= Inull(S) + Inull(T) bits. (4.2)

Similarly, the information content (or length) of the R-model message I(A, 〈S, T 〉), is the
negative logarithm of the joint probability of the alignment hypothesis and the data:

I(A, 〈S, T 〉) = − log2(Pr(A, 〈S, T 〉)) bits.

*S and T are used to refer specifically to the 3D coordinate data in two structures.

4.3. STRUCTURAL ALIGNMENT AS AN INDUCTIVE INFERENCE PROBLEM 59

Using the product rule of probability over the events A, S and T :

Pr(A, 〈S, T 〉) =

Prior of alignment︷ ︸︸ ︷
Pr(A)

Likelihood︷ ︸︸ ︷
Pr(〈S, T 〉 |A) (4.3)

Pr(A, 〈S, T 〉) = Pr(〈S, T 〉)︸ ︷︷ ︸
Prior of data

Pr(A| 〈S, T 〉)︸ ︷︷ ︸
Posterior

(4.4)

where Pr(A, 〈S, T 〉) is the joint probability of the alignment A and the structure coordinates
in S and T . This product rule can be restated in terms of Shannon’s information content by
applying a negative logarithm to both sides of the equation:

− log2(Pr(A, 〈S, T 〉))︸ ︷︷ ︸
I(A,〈S,T 〉)

= − log2(Pr(A))︸ ︷︷ ︸
I(A)

− log2(Pr(〈S, T 〉 |A))︸ ︷︷ ︸
I(〈S,T 〉|A)

= − log2(Pr(〈S, T 〉))︸ ︷︷ ︸
I(〈S,T 〉)

− log2(Pr(A| 〈S, T 〉))︸ ︷︷ ︸
I(A|〈S,T 〉)

Therefore, the total R-model message length for transmitting A, S, and T is:

I(A, 〈S, T 〉) = I(A)︸ ︷︷ ︸
First part

+ I(〈S, T 〉 |A)︸ ︷︷ ︸
Second part

= I(A) + I(S|A) + I(T |S,A)

= I(A)︸ ︷︷ ︸
First part

+ Inull(S) + I(T |S,A)︸ ︷︷ ︸
Second part

bits. (4.5)

where transmitting the alignment takes I(A) bits, transmitting the coordinate data from S
takes Inull(S) bits, and transmitting coordinates from the target structure T using A and S
takes I(T |S,A) bits. In these terms, the first part of the message, I(A), measures the alignment
hypothesis complexity (shown in blue). The second part of the message measures the fidelity
(shown in red). Note that I(S|A) = Inull(S) because S is assumed to be independent: A does
not inform S.

4.3.2 Statistical Properties of the Information Measure

The I-value measure has the following three key properties:

1. The difference between the lengths of the messages needed to transmit the structures S
and T using any two alignments, gives their log-odds posterior ratio.

Formally, given any two competing alignment hypotheses, A1 and A2, the difference in
total message length between these is:

I(A2, 〈S, T 〉)− I(A2, 〈S, T 〉) = − log(Pr(A1, 〈S, T 〉)) + log(Pr(A2, 〈S, T 〉))

= log

(
Pr(A2, 〈S, T 〉)
Pr(A1, 〈S, T 〉)

)
From the product rule of probability, for an alignment hypothesis, A:

Pr(A, 〈S, T 〉) = Pr(〈S, T 〉)Pr(A| 〈S, T 〉)

60 CHAPTER 4. AN MML FRAMEWORK FOR ASSESSING ALIGNMENT QUALITY

Therefore, the log-odds posterior ratio between any two competing alignment hypotheses
A1 and A2 is:

I(A2, 〈S, T 〉)− I(A2, 〈S, T 〉) = log

(
Pr(〈S, T 〉)Pr(A2| 〈S, T 〉)
Pr(〈S, T 〉)Pr(A1| 〈S, T 〉)

)
= log

(
Pr(A2| 〈S, T 〉)
Pr(A1| 〈S, T 〉)

)

This proposition is important when comparing competing alternative alignments between
protein structures S and T , they can now be compared based on their message lengths:
the best alignment hypothesis, A∗, is the one that results in the shortest message length
for I(A∗, 〈S, T 〉).

2. The information measure permits a natural null hypothesis test where the statistical signif-
icance of any proposed alignment hypothesis can be estimated by comparing the R-model
message length with the null model message length. Any alignment hypothesis, A, with
and R-model message length worse (longer) than that of the null model message length
must be rejected :

If I(A, 〈S, T 〉) ≥ Inull(〈S, T 〉) = Inull(S) + Inull(T) Reject A

This is because the null model hypothesises no relationship between the pair of structures,
〈S, T 〉. The coordinates of S and T are stated independently of one another. Therefore,
their transmission does not benefit from any compression. If a proposed alignment, A,
causes the message required to state I(A, 〈S, T 〉) to be longer, then it is a less likely
hypothesis by the reasoning from property 1 stated above.

This property is important in deciding whether S and T are related at all. Or, more gen-
erally, in deciding whether (and to what extent) a given alignment defines a relationship
between S and T .

3. The structural alignment problem involves a trade-off between the conflicting objectives
of maximising the coverage and fidelity. Note that coverage (in its various manifestations
in existing scoring functions) is a crude approximation of the alignment hypothesis com-
plexity. Similarly, the fidelity of a structural alignment is approximated using the RMSD
after least-squares superposition or using some distance measure.

The information measure provides an objective, formal trade-off between the coverage, as
measured by the complexity of the alignment hypothesis I(A) and the fidelity of the struc-
tures given the proposed alignment (I(T |S,A)). Unlike previous attempts, these terms
are not ad hoc approximations, as they represent rigorous estimations of the Shannon
information content based on lossless encoding and compression.

The following sections explore the details of computing the message lengths of each term in
Equation 4.5, I(A), Inull(S), and I(T |S,A), using various encoding schemes. Note that these
encoding schemes are improved further in Chapter 5.

4.4. FORMULATION OF THE ALIGNMENT ENCODING MESSAGE LENGTH: I(A) 61

4.4 Formulation of the Alignment Encoding Message Length:

I(A)
This section describes four possible methods of encoding the alignment string. While describing
these, the term index will be used to describe the number of columns encountered since the
beginning of the alignment, and the term offset will be used to describe the number of residues
in either S or T that have been encountered since the last match state in S or T , respectively.

m

i d

S - - - E K K - T V L G V G S C
T R G T V S R S - - - G T L T -

FSA str i i i m m m i d d d m m m m d

(a) (b)

Figure 4.1: (a) Order-preserving protein structural alignments can be encoded from as a string
derived from three-state automaton. (b) An example alignment of two protein sequences con-
taining all possible state transitions. Note that the transition from a delete state to an insert
state is not present because it is equivalent to the insert to delete transition. This example
contains two contiguous blocks of correspondences (highlighted).

An order-preserving alignment, A, between the pair of protein structures, 〈S, T 〉, defines a
state string over three states: match (m), insert (i), and delete (d) (see Section 2.2). This
string is derived from a Finite State Automata (FSA), as shown in Figure 4.1, and encoded as
a message. To be decoded, the receiver needs to know the length of the alignment (|A|), plus
the contents of the string. The length of the alignment will be stated using the universal code
for positive integers as described in Section 3.4. This code transmits the length in Iinteger(|A|)
bits.

Fixed Width Encoding: This method encodes the alignment as a string of states. In the
example from Figure 4.1(b) the string of states would be: “iiimmmidddmmmmd”. Each state in
the state string can be encoded over a uniform probability distribution. As an alignment can
be in three possible states, a state can be encoded in log2(3) ≈ 1.58 bits. This will result in the
message length for any alignment, A, being the number of states in the alignment plus log2(3)
bits for each state:

IFixed Width(A) = Iinteger(|A|) + |A| log2(3) bits.

As demonstrated in Section 4.4.1 below, this encoding method is too inefficient and is not
considered any further.

Time complexity: for computing I(A) using this method is constant since only the length
of the state string is required.

62 CHAPTER 4. AN MML FRAMEWORK FOR ASSESSING ALIGNMENT QUALITY

Corresponding Block Encoding: This encoding method treats an alignment as an ordered
set of contiguous, monotonic blocks of correspondences that do not contain any gaps. In the
example from Figure 4.1(b), such blocks are highlighted in gray. Each block of correspondences
can be identified by a tuple of three values: the offset of the first corresponding residue in S,
likewise for the first in T , and finally the length of the block of correspondences. For the example
in Figure 4.1(b), the alignment has two blocks of correspondences which are highlighted: (0, 3, 3)
and (3, 1, 4). To make the message decodable, the transmitter must also state three preliminary
values: the number of (tuples representing) matched blocks in the alignment, and the number
of trailing i and d states that occur after the final matched block. Thus the encoding of the
example alignment in Figure 4.1(b) is: 2, 0, 1, (0, 3, 3), (3, 1, 4) as it has two matched blocks,
zero trailing insert states and one trailing delete state. All values are transmitted using the
integer code (see Section 3.4) resulting in:

IBlock(A) = Iinteger(2) + Iinteger(0) + Iinteger(1) + Iinteger(0) + Iinteger(3) + Iinteger(3)

+ Iinteger(3) + Iinteger(1) + Iinteger(4) bits.

Time complexity: of this Block alignment encoding scheme is linear in the length of the
state string. This is because the string needs to be iterated over to find the indexes of the
blocks of correspondences.

Run Length Encoding (RLE): As before, this method encodes the alignment as a string of
states. In the example from Figure 4.1(b) above, the string of states would be: “iiimmmidddmmmmd”.
Biological macromolecules retain local similarities between related structures such as those cre-
ated by helical secondary structures. These are often aligned together as a contiguous run of
correspondences with contiguous runs of gap states (i or d) in between. Therefore, it may
be assumed that biologically significant alignments are generated by automata that only in-
frequently transition between different states and instead prefer to continue in the same state,
(see Figure 4.1(a)) usually resulting in long blocks of equal states.

This knowledge is used by the RLE encoding method to efficiently encode an alignment state
string as follows. Firstly, state the total number of contiguous runs in the alignment, which is
6 in the example from Figure 4.1(b). Then state the type and length of each run. Thus, the
example alignment state string in Figure 4.1(b) whould be encoded as: 6, (i, 3), (m, 3), (i, 1),
(d, 3), (m, 4), (d, 1). All integer values are transmitted using the integer code (see Section 3.4),
while states are transmitted using a fixed-width code in log2(3) ≈ 1.58 bits.

Time complexity: of the RLE method is linear in the number of states in the alignment state
string. Each state in the string needs to be examined to find the length of each run.

Adaptive First-Order Markov Model Encoding: An alternate method is to treat the
alignment state string as a sequence of transitions between states, rather than a sequence of
states. In the example from Figure 4.1(b), this would mean encoding the alignment state
string, “iiimmmidddmmmmd”, as a series of state transitions: (i → i), (i → i), (i → m),
(m → m), (m → m), (m → i), (i → d), (d → d), (d → d), (d → m), (m → m), (m → m), (m → m),
(m → d). For the sake of brevity, this thesis uses the notation, md to refer to the (m → d)
transition and so on. This series of state transitions can be encoded very efficiently using an
approach similar to the adaptive encoding method used by Wallace and Boulton (1969) over a
3-state Markov chain. This model permits 9 possible state transitions, mm, mi, md, im, ii, id,

4.4. FORMULATION OF THE ALIGNMENT ENCODING MESSAGE LENGTH: I(A) 63

dm, di, and dd. Associated with each possible state transition is a transition probability, as
in Figure 4.2, Pr(mm), Pr(mi), Pr(md), and so on. The transition probabilities are constrained
such that the sum of all probabilities along edges leaving a state must sum to 1. For example,
Pr(mm) + Pr(mi) + Pr(md) = 1.

While the above probabilities can be computed for any given alignment on the transmitters
side, the receiver needs to know these probabilities in advance to be able to decode the align-
ment. An adaptive code is an efficient approach to construct a decodable message over this first
order Markov model. The adaptive encoding here requires maintaining nine running counters,
one for each possible transition probability, all initialised to 1. As a boundary case, the first
state is transmitted with a uniform probability of 1/3. Traversing the alignment string left to
right, for every observed transition, the transmitter estimates its probability by dividing the
current value of the corresponding transition counter by the sum of all counters from previous
to any state. After estimating the probability, the transmitter encodes the current alignment
state using this probability and then increments the corresponding counter by 1.

The code length to encode each state is the negative logarithm of its estimated probability.
Summing this over all state transitions in the alignment FSA string, and adding it to the
code length required to transmit the size of the alignment over the integer code results in the
estimation of I(A) using this method. From the adaptive transition probability estimates in
Table 4.1 below, the example in Figure 4.1(b) would be encoded with the following message
length:

IMarkov(A) = Iinteger(15)− log2(1/3)− log2(1/3)− log2(2/4)− log2(1/5)− log2(1/3)− log2(2/4)

− log2(1/5)− log2(1/6)− log2(3/7)− log2(4/8)− log2(2/9)− log2(3/7)− log2(4/8)

− log2(5/9)− log2(2/10)

The example alignment in Figure 4.1(b) is encoded using the adaptive Markov method as
described above in Table 4.1.

Time complexity: for computing I(A) using this method takes linear time in the length of
the state string. This is because each transition between states in the state string needs to be
examined in order.

m

Pr(mm)

i

Pr(im)

Pr(ii)

d

Pr(dm)

Pr(di)

Pr(dd)

Pr(mi) Pr(md)

Pr(id)

Constraints:
Pr(mi) = Pr(md)
Pr(im) = Pr(dm)
Pr(di) = Pr(id)
Pr(ii) = Pr(dd)

Figure 4.2: A three-state automata, with transition probabilities marked, used for adaptive
first-order Markov encoding of an alignment. Symmetrical transition probabilities are enforced
according to the constraints listed on the left.

64 CHAPTER 4. AN MML FRAMEWORK FOR ASSESSING ALIGNMENT QUALITY

Table 4.1: An illustrated example of the transmission of the alignment state string in Fig-
ure 4.1(b), “iiimmmidddmmmmd” using the Adaptive First-Order Markov encoding method. A
star (*) is placed next to a counter value when it is updated after being used to encode a
state transition. The state transition probability is estimated before the transition counters are
updated. These values are given in parentheses. Note that this update occurs in symmetrical
rows according to the four symmetry constraints listed in Figure 4.2.

Alignment
transitions: → i i→ i i→ i i→ m m→ m m→ m m→ i i→ d d→ d d→ d d→ m m→ m m→ m m→ m m→ d

m→m counter 1 1 1 1 (1)2* (2)3* 3 3 3 3 3 (3)4* (4)5* (5)6* 6
m→i counter 1 1 1 1 1 1 (1)2* 2 2 2 2 2 2 2 3*
m→d counter 1 1 1 1 1 1 2* 2 2 2 2 2 2 2 (2)3*
m→* total 3 3 3 3 (3)4 (4)5 (5)7 7 7 7 7 (7)8 (8)9 (9)10 (10)12
i→m counter 1 1 1 (1)2* 2 2 2 2 2 2 3* 3 3 3 3
i→i counter 1 (1)2* (2)3* 3 3 3 3 3 4* 5* 5 5 5 5 5
i→d counter 1 1 1 1 1 1 1 (1)2* 2 2 2 2 2 2 2
i→* total 3 (3)4 (4)5 (5)6 6 6 6 (6)7 8 9 10 10 10 10 10
d→m counter 1 1 1 2* 2 2 2 2 2 2 (2)3* 3 3 3 3
d→i counter 1 1 1 1 1 1 1 2* 2 2 2 2 2 2 2
d→d counter 1 2* 3* 3 3 3 3 3 (3)4* (4)5* 5 5 5 5 5
d→* total 3 4 5 6 6 6 6 7 (7)8 (8)9 (9)10 10 10 10 10
Estimated
probability 1/3 1/3 2/4 1/5 1/3 2/4 1/5 1/6 3/7 4/8 2/9 3/7 4/8 5/9 2/10

4.4.1 Selecting an Alignment Encoding Scheme

As illustrated above, there are many possible encoding schemes available to encode alignments.
The aim is to define the best encoding method, that is able to state an alignment using the
shortest possible message. To determine which of the above schemes is best, they were eval-
uated using pairwise benchmark alignments provided by the SABmark (Walle et al., 2005)
database. SABmark provides 29, 759 pairwise alignments in May 2016, when this evaluation
was conducted.

Each of the alignment encoding schemes above was used to compute the length of the align-
ment encoding, I(A), for all of the benchmark pairwise alignments provided by SABmark. The
results are plotted in Figure 4.3 using a notched box-and-whisker plot to show the distribu-
tion of encoding lengths . Based on these results it is clear that the Markov encoding scheme
provides the best compression among the methods discussed, closely followed by the Block

encoding method.
The Adaptive First-Order Markov scheme has a median encoding length for I(A) of 111.3

bits with an inter-quartile range of 68.09 bits. The next best is the Block encoding scheme
which achieves a median encoding length for I(A) of 131.9 bits with an inter-quartile range of
78.33 bits. The RLE encoding scheme achieves a median encoding length for I(A) of 145.4 bits
with an inter-quartile range of 90.7 bits. Finally, as expected, the näıve fixed width encoding
scheme is much worse than the others. It achieves a median encoding length for I(A) of 324.9
bits with an inter-quartile range of 259.9 bits. Therefore, the Adaptive Markov encoding
scheme is used, for the remainder of this chapter, as the scheme for the estimation
of I(A) since it results in the shortest encoding length of the benchmark alignments
and the smallest deviation from its median.

4.5 Formulation of the Null Model Message Length: Inull(·)
The null model message transmits the protein coordinates in S and T independently, that is,
without an alignment hypothesis. This is done to either transmit S (for later transmission of
T using an alignment hypothesis) or to test the alignment hypothesis against the null model

4.5. FORMULATION OF THE NULL MODEL MESSAGE LENGTH: INULL(·) 65

Fixed Width RLE Block Markov

0

500

1000

1500

2000

I(
A

):
 A

li
g

n
m

e
n

t
m

e
s

a
g

e
 l

e
n

g
th

 (
in

 b
it

s
)

Alignment message length statistics

Figure 4.3: A comparison of the
various alignment encoding schemes
presented in Section 4.4. The plot
breaks the range encoding lengths
into four parts: the bottom line of
the box marks the 25th percentile
of the message lengths, the line
through the center of the box marks
the median or 50th percentile of the
message lengths, while the top line
in the box marks the 75th percentile
of the message lengths. The length
of the bottom and top whiskers rep-
resent the range of the first and
fourth quartiles, respectively. The
size of the notch shows the 95% con-
fidence interval for the median.

statement of S and T . Recall that in this work, only the Cα atomic coordinates are considered
(see Section 4.3). Recall also, that protein coordinate data are recorded to a precision of
three decimal places in the PDB (see Section 2.1.2). Even though this is not the experimental
precision to which protein structures are determined. In this work, the coordinate data is stated
to three decimal places so that the receiver can reconstruct the coordinate data to the same
precision, ε, that the transmitter sees in PDB coordinate data files (see Section 2.1.2).

This section presents several potential null model encoding schemes. Note that a useful
null encoding scheme should be independent of the coordinate frame-of-reference: it should not
depend on the position and orientation of the structure in space.

Fixed-width encoding: The most näıve Null encoding treats the (x, y, z) coordinate data
as a string of symbols drawn from a dictionary of 12 elements: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,−, .}. For
example, a Cα atom with coordinates x = −1.739, y = −34.450, z = 10.061 can be expressed as
the string: “−1.739−34.45010.061”,� which is 19 symbols long. Letting C denote a chain of Cα

coordinates, a particular coordinate in C, Ci is represented as a string of symbols containing
|Ci| such symbols. The transmitter simply states the number of symbols in the string in
Iinteger(|Ci|) bits and then the transmitter encodes the string itself in |Ci| log2(12) bits. Using
this measure, the chain of Cα coordinates, C is encoded using a message with a length of:
Ifixed-width(C) = Iinteger(|C|) + |C| × (Iinteger(|Ci|) + |Ci| log2(12)) bits.

Each symbol is assigned a unique fixed-size code of log(12) ≈ 3.6 bits. Therefore, the
message length required to encode the example above, using the fixed-width encoding method
is Iinteger(19) + 19 log2(12) ≈ 77 bits.

This encoding scheme has problems that make it undesirable as a null encoding model.
Firstly, this encoding method does not take advantage of crucial aspects of the protein structure,
especially the nature of the data as chain of coordinates. Furthermore, each symbol in the
dictionary is not equally likely and thus transmitting each symbol over a uniform distribution

�The receiver can delimit x from y from z coordinates using the position of the decimal point. The next
coordinate begins after encountering three symbols after a decimal point.

66 CHAPTER 4. AN MML FRAMEWORK FOR ASSESSING ALIGNMENT QUALITY

(where each symbol in the dictionary is assigned an equal probability) is inefficient, giving a
poor estimate for Inull(〈S, T 〉).

Time complexity: The time required to compute the null model message length depends
on the number of coordinates, and the number of symbols per coordinate. Since the number of
symbols per coordinate is essentially constant, computing the null model message length with
the fixed-width encoding model takes linear time in the number of coordinates in the chain,
O(|C|).

Bounding-box encoding: A more efficient encoding method bounds the space around a
protein chain with a cuboid, or bounding box. The space within the bounding box is then
divided into elements of size ε× ε× ε. Any Cα coordinate can then be stated as the coordinates
of an element to the correct precision of measurement. Firstly the transmitter establishes
preliminaries. The size of the bounding box may be encoded using the fixed-width encoding
described above. And the number of Cα coordinates in the chain of atoms, C, can be encoded
using the integer code in Iinteger(|C|) bits.

To encode the positions of each Cα atom, let the bounding box have total edge lengths:
δx, δy, and δz. The x coordinate of any element within the bounding box can then be stated
in log(δx

0.001
) ≡ log(δx × 1000) bits, and equivalently for the y and z coordinates. Therefore, a

chain of Cα coordinates, C, is encoded using this scheme in: Ibounding-box(C) = Iinteger(|C|) +
Ifixed-width(δx) + Ifixed-width(δy) + Ifixed-width(δz) + |C| × log2(δxδyδz × 10003) bits.

While more efficient in terms of message length than the fixed-width encoding scheme, this
bounding-box approach has similar problems to the fixed-width encoding scheme, including
not taking advantage of the fact that the protein is a chain of coordinates. The next encoding
scheme to be discussed rectifies this issue by accounting for the protein chain.

Time complexity: The time complexity for computing the null model message length using
this approach takes constant time, O(1). This is because no iteration is required.

Uniform-directional encoding: A better model that takes advantage of the nature of pro-
tein chains is defined by Konagurthu et al. (2012). This scheme represents the coordinates
of Cα atoms using a spherical coordinate system with three axes: (r, 〈θ, φ〉). This coordinate
system is orthogonal and equivalent to the Cartesian coordinate system.

Firstly, recall that the distance between successive Cα atoms in a protein chain is highly
constrained around 3.8Å (see Section 2.1.5). Given a chain of coordinates, C1, C2, . . . , Cn, any
coordinate Cj can be transmitted given the previous Cj−1, by first transmitting the radius rj
between Cj−1 and Cj using a normal distribution N (r;µ, σ) stated to ε = 0.001 Å precision,
with µ = 3.8 Å and σ = ±0.2 Å. The length of the message to encode rj is I(rj).

Iradius(rj) = − log2(N (rj;µ, σ) · ε) bits. (4.6)

This is the standard method to transmit the distance between consecutive Cα atoms
which is used throughout this thesis.

With this information transmitted, the receiver now knows that Cj lies on a sphere of radius
rj centred at Cj−1, but does not yet know exactly where on the sphere Cj lies. Assuming that
Cj is distributed uniformly over the surface of the sphere, the transmitter can discretise the
surface of the sphere into cells, each of area ε2. Using this discretisation, Cj can simply be
transmitted as a cell index number, cj, over a uniform distribution. With the knowledge of

4.5. FORMULATION OF THE NULL MODEL MESSAGE LENGTH: INULL(·) 67

Cj−1, rj and cj, the receiver can reconstruct Cj to ε precision. Stating the cell index number
uniformly on a sphere with surface area equal to 4πrj takes:

I(cj) = − log2

(
ε2

4πr2
j

)
= log2(4πr2

j)− 2 log2 ε bits. (4.7)

Figure 4.4: A stylised representation of the
uniform directional encoding model. The di-
rection of an unknown coordinate, Cj, from
the position of a known coordinate, Cj−1, is
encoded on the surface of a sphere dissected
into cells with area ε2. Each cell is num-
bered (or indexed) according to an agreed
upon scheme. The index number of the cell
containing Cj is transmitted with uniform
probability.

To transmit the chain of Cα coordinates C1, C2, . . . , Cn using this encoding model, the
message starts with the number of Cα atoms in the chain, |C|, followed by incrementally
transmitting (using the method above) the chain of coordinates. |C| can be transmitted using
the integer code in Iinteger(|C|) bits (refer to Section 3.4). From Equation 4.6 and Equation 4.7,
the message length required to state a coordinate, Cj, is:

Inull(Cj) = Iradius(ri) + I(ci) bits. (4.8)

The total message length required to send a chain, C, of coordinates is therefore:

Iuniform-sphere(C) = Iinteger(|C|) +

|C|∑
i=2

Inull(Ci) bits.

Time complexity: The time required to compute the null model message length using this
scheme depends on the computation of the radius and the position on the surface of the sphere.
Both of these (constant time) operations, are performed |C| times for each Cα atom in the
coordinate chain. Therefore, the uniform-directional encoding model is a linear time, O(|C|),
operation.

4.5.1 Selecting a Null Encoding Scheme

To determine which of the three null encoding schemes described above is best, they were evalu-
ated using 3000 randomly selected SCOP domains (see Section 4.8 and Appendix A for details).
Each SCOP domain was encoded using each of the three encoding models and the resulting mes-
sage lengths divided by the length (number of Cα atoms) of the domain. This calculation gives
an average message length to encode a Cα coordinate in that domain. The results were plotted
using a notched box-and-whisker plot to show the distribution of average message lengths in
Figure 4.5. The fixed-width encoding method encodes a Cα coordinate with a median average
message length of 51.24 bits and inter-quartile range of 0.75 bits. The bounding-box method
requires a median 45.4 bits on average to encode a Cα coordinate with an inter-quartile range

68 CHAPTER 4. AN MML FRAMEWORK FOR ASSESSING ALIGNMENT QUALITY

Fixed Width Bounding Box Uniform Sphere

35

40

45

50

55

A
v

e
ra

g
e

 (
P

e
r

C
α

)
N

u
ll

 m
e

s
s

a
g

e
 l

e
n

g
th

 (
in

 b
it

s
)

Null model message length statistics

Figure 4.5: A comparison between the average (per Cα) message lengths of various coordinate
encoding models. The notched box-and-whisker plots divide the data as follows: the bottom
of the box is the 25th percentile of average message lengths the, line through the center of the
box is the median or 50th percentile of average message lengths, and the top line in the box
is the 75th percentile of average message lengths. The length of the bottom and top whiskers
represent the range of the first and fourth quartiles respectively. The size of the notch indicates
the 95% confidence interval for the median. Outliers are shown as red points.

of 1.52 bits. Clearly, the most efficient method of encoding is the uniform-direction method
encodes which encodes a Cα coordinate with a median average message length of 37.16 bits and
inter-quartile range of 0.23 bits. Therefore, the uniform-direction encoding scheme is
used as the null model for all experiments in this chapter.

4.6 Formulation of the Coordinate Compression Model:

I(T |S,A)

With the information of S and A known to the receiver, the transmitter can now use that
information to encode the coordinates of T . Intuitively, encoding of T is based on the fact
that when scanning A from left to right, T contains runs of coordinates that alternate between
blocks of insertions and matches with respect to S and the stated alignment. Note that, in
this transmission, all deletion blocks (with respect to S) in T are ignored as they contain no
information to be transmitted about T (this can be seen in Figure 4.1(b)). More formally, the
insertion blocks are encoded as follows. Let A yield {I1, . . . , Im} insertion blocks, where any
Ik represents a consecutive run of coordinates that are inserted in T (with respect to S). Each
insertion block is transmitted, using Equation 4.5, as a null message taking:

Iins(T |S,A) =
m∑
k=1

|Ik|∑
i=1

Inull(Iki)

4.6. FORMULATION OF THE COORDINATE COMPRESSION MODEL: I(T |S,A) 69

For the example in Figure 4.1(b), the alignment yields two insert blocks. The first containing
three residues from T , {R,G,T}. The second contains only one residue from T , {S}. As
described above, these four coordinates are transmitted using the uniform-direction model.

What remains to be sent are the coordinates in the blocks of coordinates in T that are
aligned to corresponding Cα coordinates in S. Which, for the example in Figure 4.1(b), are
{V, S,R}, and {G,T,L,T}. Let {~s1, ~s2, . . . , ~sNe} and {~t1,~t2, . . . ,~tNe} denote the ordered set
of corresponding coordinates in S and T , respectively. The receiver already knows S and the
alignment. From the alignment information the receiver can infer the indexes of the aligned
residue-residue correspondences between S and T . In the example from Figure 4.1(b), these
correspondences are, (E,V), (K, S),(K,R),(G,G), (V,T),(G,L), and (S,T). Thus, the following
procedure can be used to transmit the aligned coordinates in T . To start the procedure, the
first� three matched coordinates in T {tj1 , tj2 , tj3} are sent over the null model message taking:

Istartup(T |S,A) = Inull({~t1,~t2,~t3}) bits.

For the example in Figure 4.1(b), these first three matched coordinates in T are, {V, S,R}.
The transmission of this startup message ensures that orientation information is available to
the receiver. The remaining aligned coordinates in T are then transmitted incrementally so that
the receiver does not need to know the orientation of T after least-squares superposition ahead
of time. Instead, the receiver computes a superposition adaptively, based on the information
it has at any point in time. This is achieved by the following method. To transmit the
current matched coordinate ~tj+1, the transmitter considers only the set of matched coordinates
{~t1,~t2,. . . ,~tj,~tj+1}. For simplicity, let this set represent the transformed state after least squares
superposition with the corresponding coordinates in S (see Section 2.2.3). In this procedure,
an adaptive superposition is repeated for each pair of aligned coordinates. Throughout this
procedure the set of coordinates from S is treated as fixed (under orthogonal transformation)
while all coordinates in T are rotated and translated. An example of adaptive superposition is
illustrated in Figure 4.6.

Figure 4.6: An idealised example of the adaptive superposition used to send the matched
residues in T (in blue) incrementally given the knowledge of S (in black). Both structures
have 8 points and are assumed here to be in one-to-one correspondence. Assume that the
receiver already knows the first 3 points of T . The transmitter sends the fourth point in T
by superposing all previously matched points between the two structures. (Green crosshairs
shows the rotational center of superposition.) This orients the fourth point (in red) in T or,
more generally, tj+1, whose deviation from its corresponding si+1 can be encoded over a von
Mises-Fisher spherical distribution.

�Only the first, not the first in every matched block.

70 CHAPTER 4. AN MML FRAMEWORK FOR ASSESSING ALIGNMENT QUALITY

Using this setup, ~tj+1 is transmitted over a directional distribution on a sphere. This is
achieved by first transmitting the radius rj = |~tj+1 − ~tj| over a normal distribution as in
Equation 4.6. This allows the transmitter to state ~tj+1 as a point on a sphere with radius rj
centred at ~tj. However, it is not stated over a uniform distribution (which would make it a null
model description), since the knowledge of the correspondence between ~tj+1 with si+1 informs
the receiver about its position on the sphere (provided the assigned correspondence is a ‘good’
one). Since the receiver already knows the corresponding point si+1, after transmitting rj, a
von-Mises Fisher (vMF) directional probability distribution is used to state ~tj+1 more concisely.
In directional statistics, the vMF distribution (see Section 5.2.2) gives a probability density
function on the surface of any sphere. In 3D, the probability is distributed symmetrically
around a mean direction with circular density contours. This effectively allows the receiver
to predict the direction of the next coordinate, gaining compression when the prediction is
accurate.

Using this distribution to transmit ~tj+1, x̂j+1 is computed as the direction cosines of the
vector ~tj+1 − ~tj, and µ̂j+1 as the direction cosines of the vector ~si+1 − ~tj. The probability of
stating ~tj+1 to the required precision using the vMF distribution over the surface of a 3D sphere
of unit radius is then given by:

Pr(x̂) = ε′
2 κ

2π(eκ − e−κ)
eκµ̂·x̂

where ε′2 = ε2

r2
j
, accounting for the scaling of the sphere of radius rj to a unit sphere. Transmis-

sion of each tj+1 requires the concentration parameter κ.
The maximum-likelihood estimator is used based on the available superposition (see Mardia

and Jupp (1999)). The above procedure works only when the receiver and transmitter are
encoding and decoding the points using exactly the same concentration parameter κ. To avoid
stating κ explicitly as a part of the message, and to minimise the computational complexity of
the procedure, a maximum likelihood estimate, κml, can be inferred based on the previous x̂i’s
observed so far in the incremental procedure described above using a method by Banerjee et al.
(2005). In fact, neither transmitter nor the receiver need to store all previous values of x̂ since∑
x̂i forms the sufficient statistic for κml and this can be updated efficiently as the procedure

iterates. If there are N previous x̂ observations, let R̄ =
∑N
i=1 x̂i
N

, then:

κml =
R̄(3− R̄2)

1− R̄2

Since the encoding of a current x̂i is based on a κml, the receiver can decode the coordinates by
computing the same κml that the transmitter uses to encode the coordinates. The code length
to state x̂ using a vMF distribution on a unit sphere is then: Ivmf(x̂) = − log(Pr(x̂)) bits.

Each ~tj+1 is transmitted iteratively over this procedure, which is termed adaptive superpo-
sition. An illustration of this adaptive superposition procedure is shown in Figure 4.6. The
message length required to transmit the matched coordinates in T with respect to the matched
coordinates in S is:

Imatch(T |S,A) = Istartup(T |S,A) +
Ne∑
i=4

Iradius(ri) + Ivmf(x̂i) bits.

4.7. HANDLING SHIFTS AND ROTATIONS 71

Combining the message lengths of transmitting coordinates in the insertion and matched blocks
gives:

I(T |S,A) = Iins(T |S,A) + Imatch(T |S,A) bits.

4.7 Handling Shifts and Rotations

So far, the information measure has been estimated under a rigid model of structural alignment.
The rigid model treats the structures being aligned as rigid under least-squares superposition.
This model can be generalised to handle certain common types of plastic deformations com-
monly observed in protein evolution, such as hinge rotations and shifts (see Section 2.1.6 for an
introductory treatment of plastic deformations in protein structures). Handling these deforma-
tions requires a modification in the way I(T |S,A) and I(A) are estimated, yielding a flexible
model of transmission. A flexible encoding model does not treat the structures as rigid, but
allows for shifts and rotations.

Without loss of generality, assume that T contains a certain number of shifts and rotations,
with respect to S, associated with its residues. In computing I(T |S,A), alignment A is par-
titioned at the residues in T where the shifts and rotations occur. For example, consider the
alignment in Figure 4.7 containing a hinge rotation. Then, the alignment can be partitioned
into two separate parts: before the hinge and after the hinge. In this example, the hinge is at
residue 10 of T .

123 4

S: --XXX---X

T: XXXXXXXXX

123456789

*

5

X

X

0

1

1

67890123

XXXXXXXX

---XXXXX

12345

⇒

*

123 45

--XXX---XX

XXXXXXXXXX

1234567890

1

* 1

567890123

XXXXXXXXX

X---XXXXX

0 12345

1︸ ︷︷ ︸
A[T1,...,T10]

︸ ︷︷ ︸
A[T10,...,T15]

Figure 4.7: An example alignment to be encoded with a hinge in T at residue offset of 10. This
column is framed and marked by the star (∗) on the left. The flexible alignment is then treated
as two separate partial alignments on the right, where a partial alignment contains residues T1

to T10, and the other contains residues T10 to T15.

Let these partial alignments be denoted as A[T1, . . . , T10] and A[T10, . . . , T15], identifying the
start and end residue indexes in T at which the partition is defined. Then I(T |S,A) is computed
as I(T |S,A[T1, . . . , T10]) + I(T |S,A[T10, . . . , T15]) using the unmodified coordinate compression
model from Section 4.6 above. More generally, if there are k residues in T about which shifts
or hinge rotations are defined, the full alignment A is partitioned into k+ 1 partial alignments:
A[T1, . . . , Ti1], A[Ti1 , . . . , Ti2], . . . ,A[Tik , . . . , T|T |], where i1 < i2 < · · · < ik < |T |. Given these
partitions, I(T |S,A) can be computed as I(T |S,A[T1, . . . , Ti1]) + · · · + I(T |S,A[ik, . . . , |T |]).
This immediately poses another inference question: Given an alignment A of S and T , how
many shifted or hinge rotated residues does it contain? Note that adding a shift or hinge
rotation has an overhead for which must pay by achieving a better fit, if it is to be accepted.
The overhead is a statement of the number of shifts or hinge rotations, k, which can be efficiently
encoded in Iinteger(k) bits, plus the positions of the shifts/hinges, which can each be transmitted
as integer offsets from the beginning of T also using the integer code (see Section 3.4). This

72 CHAPTER 4. AN MML FRAMEWORK FOR ASSESSING ALIGNMENT QUALITY

message length represents a further trade-off between complexity (in this case the number of
shifts/hinges) and the fidelity of fit after rotating or shifting.
Inference of shifted/rotated residues: A dynamic programming algorithm (see Section 6.2.4) is
used to optimally partition A minimizing I(T |S,A). The algorithm first constructs a matrix M
of size |T |×|T | such that each cell M(i, j) (1 ≤ i < j ≤ |T |) stores the value I(T |S,A(i, . . . , j))
that is, the value of a partition when there are no hinges from i to j. The best partition
of A is then computed using the following one-dimensional dynamic programming recurrence
relationship:

P(1, . . . , j) =
j−1

min
i=1

{
M(1, j) + Iinteger(1),
P(1, . . . , i) +M(i, j) + Iinteger(|P(1, . . . , i)|+ 1) ∀1 ≤ j ≤ |T |

where any P(1, . . . , i) gives the optimal partitioning (positions of the hinges/shifts) up to the ith

residue in T , 1 ≤ i ≤ |T | and |P(1, . . . , i)| gives the number fo such partitions. This recurrence
relationship simply states that the prefix of the alignment from 1 . . . j, can be optimally stated
with no hinges/shifts (first line of the formula), or with the optimal segmentation of the prefix
1 . . . i < j plus another segment from i . . . j. At the end of this procedure the value P(1, . . . , |T |)
gives the component message length I(T |S,A) of Equation 4.5, in a way that handles shift and
hinge rotations. This method of computing I(T |S,A) is used for all experiments in
the remainder of this chapter.

4.8 Results and Discussion

In this Section, the information measure is compared with the nine popular scoring functions
discussed in Section 4.2: DALI z-score (Holm and Sander, 1993), TM-Score (Zhang and Skol-
nick, 2004), MI and SI (Kleywegt and Jones, November 1994), STRUCTAL score (Subbiah et al.,
1993; Gerstein and Levitt, 1998; Levitt and Gerstein, 1998), GDT TS and LGA S3 (Zemla, 2003),
SAS (Subbiah et al., 1993), and GSAS (Kolodny et al., 2005). Notably, there is no gold standard
to compare structural alignment quality measures against. This has doubtless led to some of
the proliferation of these measures (Slater et al., 2013). Rather than establishing the informa-
tion measure as superior, the results in this section are a consistency check amongst these other
quality measures and against the SCOP (Murzin et al. (1995); see Section 2.1.4) hierarchy as
a baseline.

The section is divided into two experiments. Firstly, a large scale comparison is made
among these scoring functions using the SCOPe (Fox et al., 2013) database to ensure that
the information measure follows the expected profile of alignment quality between the levels
of the SCOP hierarchy. Secondly, the level of disagreement between these scoring functions is
evaluated. This evaluation relies on measures for disorder in ranked lists. Such measures are
presented in Section 7.1 along with a new MML based measure based on similar principles to
the MML based alignment quality measure described in this chapter.

Notched box-and-whisker plots are employed throughout this thesis because they
can be very useful for encapsulating the distribution of the data. Any ‘box’ in a box-and-whisker
plot represents the region between the first (25th percentile) and the third (75th percentile),
where the height of the box gives the interquartile range (IQR). The second quartile (median)
mark is shown as a red line within this box. The ‘whiskers’ in these plots subtracts/adds 1.5
times IQR to the first/third quartile on the lower/upper side, where the distribution between
the two whiskers accounting for over 99% of the distribution (assuming the data follows a
normal distribution). Further, the box is ‘notched’ on the sides, where the height of the notch

4.8. RESULTS AND DISCUSSION 73

gives the 95% confidence interval around the median. Although this is not a formal statistical
test, the non-overlap comparing two boxes (dealing with the same data) is often used as strong
evidence that their medians are statistically different (Chambers, 1983).

4.8.1 Selection of Domains from the SCOP Database

Pairs of structural domains were randomly selected to vary along the hierarchical groups defined
by SCOP (Murzin et al., 1995): Class, Fold, Superfamily and Family. This results in a collection
of 500 domain pairs for each of the 5 levels of the SCOP hierarchy yielding 2500 SCOP domain
pairs from 3000 unique domains. According to SCOP (see Section 2.1.4), domains sharing a
family level relationship are most likely to have descended from a common ancestral domain
and, hence, are very close in their structural distance. Domains related up to the superfamily
level are also likely to be evolutionarily related, although their structures are often diverged
moderately (or more). Domains sharing a common fold share a common structural core made
up of major secondary structures that have a preserved geometry of interactions between them.
At a class level, domains do not share any major structural relationship beyond the level of
widely-prevalent standard supersecondary structures.

The method used to make this selection and a complete list of these 2500 domain pairs can
be found in Appendix A. These data are used for both of the experiments below, and are also
often used by experiments in later chapters.

4.8.2 Experiment 1: Benchmarking Against the SCOP Hierarchy

This first experiment tests the ability of the ten different alignment quality measures to differ-
entiate between protein domains with a varying closeness of structural relationship. To do this,
a data set of 2500 SCOP domain pairs were randomly selected (see Appendix A) according to
the SCOP hierarchy: Family, Superfamily, Fold, Class, and Decoy (see Section 2.1.4). Where
a decoy refers to a domain that is not in the same class as its associated, randomly selected
pair. For each domain pair, an alignment is generated using the popular structural alignment
methods DALI (Holm and Sander, 1993), TM-Align (Zhang and Skolnick, 2005b), LGA (Zemla,
2003), CE (Shindyalov and Bourne, 1998), and FatCat (Ye and Godzik, 2003). Each of these
alignment programs produces sets of 2500 alignments each (i.e., 500 for each level of the SCOP
hierarchy). Each set is then scored with each of the nine scoring functions mentioned above
plus the information measure. Note that this experiment seeks to compare scoring functions
rather than alignment programs. The alignment programs simply serve as a method to supply
various alignments to the scoring functions.

Note that for the information measure, the compression gained (in bits) over the null model
message length is shown, that is, the (Inull(〈S, T 〉) − I(A, 〈S, T 〉)) message length. Thus, the
greater the compression, the better the alignment. In contrast, when using raw message lengths
(I(A, 〈S, T 〉)), the shorter the message length, the better the alignment.

The following two figures (Figure 4.8 and Figure 4.9) show notched box-and-whisker plots
of the results from these comparisons. Each figure has 5 rows of box-and-whisker plots, one
for each scoring function used to compute the alignment score. Each column corresponds to
the alignment program used to generate the alignments. The plots can be visually compared
by looking across a row. Each notched box-and-whisker plot displays the numerical scores (as
quartile marks) produced by an alignment method and scoring function pair, over the 5 groups
of approximately 500 alignments each. The size of the notch indicates the 95% confidence

74 CHAPTER 4. AN MML FRAMEWORK FOR ASSESSING ALIGNMENT QUALITY

interval for the median score. Note that each scoring function has a different range of possible
values and therefore, looking down a column the y-axis scales will be different.

A cursory inspection of these box-whisker plots indicates that, for the given alignments
which might not be the best/optimal ones,§ all scoring functions consistently differentiate be-
tween the SCOP groups to some extent. However, none of the scoring functions can be said
to separate the SCOP groups cleanly nor to be clearly better than the others. This probably
reflects the fuzzy classification boundaries of SCOP, and partly the quality of the (potentially
sub-optimal) alignments of domain pairs generated by these popular alignment methods. For
example, the authors of TM-Score, Xu and Zhang (2010), claim that the numerical score of
< 0.5 corresponds to alignments not being in the same fold. However, the box-and-whisker
plot in Figure 4.8 corresponding to TM-Align alignments scored with TM-Scoreshows that the
median score for domains that only share a Fold level relationship is 0.5 and, thus, only half
the alignments of domain pairs in the same Fold classification have a TM-Score below 0.5. The
same is true of the DALI z-score, which defines a significance threshold for domains in the
same fold of z-score> 2 (Holm and Sander, 1993). In Figure 4.8, the plot corresponding to
DALI alignments scored using the DALI z-score, the mean DALI z-score on SCOP domain
pairs that share a Fold classification is 4.5, though more than 25% of these alignments generate
a DALI z-score less than 0. On the other hand, the information measure finds that more
than 75% of the alignments generated for SCOP domains with the same Fold classification
by every alignment program have a compression greater than the significance cutoff of 0 bits.
Furthermore, it finds the median compression for unrelated (Class and Decoy) pairs for every
alignment program to be less than zero bits of compression: not significant. There are no clear
significance criteria for the remaining scores.

Surprisingly, TM-Align generates the highest scoring Family, Superfamily, and Fold level
alignments using DALI z-score. Unsurprisingly, TM-Align and LGA alignment programs per-
form best when evaluated against their own (native) scoring function (Recall that the native
score for LGA is LGA S3). Inspecting the plots for information measure compression, alignments
generated by DALI and LGA achieve the greatest compression for domain pairs in the same Fam-
ily and Superfamily, TM-Align finds the best alignments for domain pairs in the same Fold,
and Class. Evaluating alignments using the STRUCTAL score, TM-Align generates the best
alignments for domains in the same Family, TM-Align DALI and FatCat perform similarly well
on domains in the same SuperFamily, TM-Align performs best for domains in the same Fold,
and FatCat performs best on domain pairs in the same Class. When inspecting the plots for
the related MI and SI scoring functions, alignments produced by the CE program generate the
best scores on domains on all classification levels when scored with SI, and TM-Align performs
best at all levels using MI. Inspecting plots of the SAS score, alignments produced by the CE

alignment program perform best on domains in the same Family, Superfamily, Fold (FatCat
using GSAS), and Class. TM-Align generates alignments that achieve the smallest (best) SAS

scores on unrelated decoy domains. Finally, the GSAS score does not clearly determine the best
alignment program for domains in the Class or Decoy sets. Alignments produced by These
results are summarised in Table 4.2 which shows the alignment programs that produce the
highest score for each level of the SCOP hierarchy.

It is difficult to come to a conclusion regarding either the best or the worst scoring function
based on these results as they do not show a consistent pattern of behaviour. However, they do
indicate, on an aggregate level, that each scoring function, including the information measure
described in this chapter are able to distinguish between alignments between domains at varying
levels of the SCOP hierarchy. The results of this experiment do indicate a significant degree

§A method for optimising alignments for the information measure is discussed in Chapter 6

4.8. RESULTS AND DISCUSSION 75

D
A
L
I

T
M
-
A
l
i
g
n

L
G
A

C
E

F
a
t
C
a
t

null-R-model -4
0
0

-2
0
00

2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

-4
0
0

-2
0
00

2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

-4
0
0

-2
0
00

2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

-4
0
0

-2
0
00

2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

-4
0
0

-2
0
00

2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

DALIz-score -1
0

0

-8
0

-6
0

-4
0

-2
00

2
0

4
0

6
0

8
0

1
0

0

-1
0

0

-8
0

-6
0

-4
0

-2
00

2
0

4
0

6
0

8
0

1
0

0

-1
0

0

-8
0

-6
0

-4
0

-2
00

2
0

4
0

6
0

8
0

1
0

0

-1
0

0

-8
0

-6
0

-4
0

-2
00

2
0

4
0

6
0

8
0

1
0

0

-1
0

0

-8
0

-6
0

-4
0

-2
00

2
0

4
0

6
0

8
0

1
0

0

TM-Score

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.91

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.91

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.91

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.91

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.91

STRUCTALscore -8
0

0
0

-6
0

0
0

-4
0

0
0

-2
0

0
00

2
0

0
0

4
0

0
0

-8
0

0
0

-6
0

0
0

-4
0

0
0

-2
0

0
00

2
0

0
0

4
0

0
0

-8
0

0
0

-6
0

0
0

-4
0

0
0

-2
0

0
00

2
0

0
0

4
0

0
0

-8
0

0
0

-6
0

0
0

-4
0

0
0

-2
0

0
00

2
0

0
0

4
0

0
0

-8
0

0
0

-6
0

0
0

-4
0

0
0

-2
0

0
00

2
0

0
0

4
0

0
0

GDTTS

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

F
ig

u
re

4.
8:

N
ot

ch
ed

b
ox

-a
n
d
-w

h
is

ke
r

p
lo

ts
fo

r
th

e
25

00
al

ig
n
m

en
ts

.
C

ol
u
m

n
s

in
d
ic

at
e

th
e

al
ig

n
m

en
t

p
ro

gr
am

.
R

ow
s

in
d
ic

at
e

al
ig

n
m

en
t

q
u
al

it
y

cr
it

er
ia

.
S
in

ce
th

e
or

d
in

at
e

sc
al

e
is

eq
u
al

th
ro

u
gh

ou
t

th
e

ro
w

,
th

e
p
lo

ts
ac

ro
ss

va
ri

ou
s

al
ig

n
m

en
t

p
ro

gr
am

s
ar

e
v
is

u
al

ly
co

m
p
ar

ab
le

.
G

ro
u
p

ed
w

it
h
in

ea
ch

co
lu

m
n

(l
ef

t-
to

-r
ig

h
t)

:
F

am
il
y,

S
u
p

er
fa

m
il
y,

F
ol

d
,

C
la

ss
,

D
ec

oy
.

76 CHAPTER 4. AN MML FRAMEWORK FOR ASSESSING ALIGNMENT QUALITY
D
A
L
I

T
M
-
A
l
i
g
n

L
G
A

C
E

F
a
t
C
a
t

LGA S3

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

MI

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

SI

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

SAS

0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

GSAS

0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

F
igu

re
4.9:

(C
on

tin
u
ed

from
F

igu
re

4.8)
N

otch
ed

b
ox

-an
d
-w

h
isker

p
lots

for
th

e
2500

align
m

en
ts.

C
olu

m
n
s

in
d
icate

th
e

align
m

en
t

p
rogram

.
R

ow
s

in
d
icate

align
m

en
t

q
u
ality

criteria.
S
in

ce
th

e
ord

in
ate

scale
is

eq
u
al

th
rou

gh
ou

t
th

e
row

,
th

e
p
lots

across
variou

s
align

m
en

t
p
rogram

s
are

v
isu

ally
com

p
arab

le.
G

rou
p

ed
w

ith
in

each
colu

m
n

(left-to-righ
t):

F
am

ily,
S
u
p

erfam
ily,

F
old

,
C

lass,
D

ecoy.

4.8. RESULTS AND DISCUSSION 77

Table 4.2: A summary of the (median) best performing alignment program (rows) accoring
to the scoring functions (columns) for each level of the SCOP hierarchy. Detailed results are
shown in Figures 4.8 and 4.9

Information measure
compression STRUCTAL score DALI z-score TM-Score GDT TS LGA S3 MI SI SAS GSAS

Family LGA TM-Align TM-Align TM-Align LGA LGA TM-Align CE CE CE

Superfamily DALI TM-Align TM-Align TM-Align LGA LGA TM-Align CE CE CE

Fold TM-Align TM-Align TM-Align TM-Align LGA LGA TM-Align CE CE FatCat

Class TM-Align FatCat DALI TM-Align CE CE TM-Align CE CE –
Decoy DALI CE DALI TM-Align CE CE TM-Align CE TM-Align –

of disagreement between the respective scores. The degree of disagreement is quantified in the
next experiment below.

4.8.3 Experiment 2: Level of Disagreement Between Measures of
Alignment Quality

This experiment seeks to quantify the degree of disagreement between the structural alignment
scoring functions. In experiment 1 (see Section 4.8.2) above, five structural alignment programs
were used to generate 2500 alignments each between randomly selected SCOP domain pairs.
Each of the 10 scoring functions were used to quantify the quality of these alignments. This
allows the ranking of each list of 2500 alignment produced by a particular alignment program
according to the opinion of each alignment quality scoring function. The ranking opinion of
each scoring function can then be compared against the opinion of the other scoring functions.
This facilitates a comparison of agreement on ranking of the best (or top-k) alignments by the
various alignment quality scores used for benchmarking in this chapter.

Several measures exist to compare top-k ranked lists (Fagin et al., 2003). Some of these are
introduced later in Section 7.1, which also proposes a new, information theoretic measure of the
disorder between top-k lists based on similar concepts that underpin this chapter. Two other
metrics are used to compare these ranked lists of alignments: one based on Spearman’s ρ rank
correlation coefficient (Spearman, 1904) and another based on Kendall’s tau distance (Kendall,
1938). Both are slight modifications of the original measures which were proposed by Fagin
et al. (2003).

A selection of alignment rank comparisons is shown in Figure 4.10.¶ These plots show the
correlation scores for the top ranked alignment in various combinations of alignment program
and alignment scoring function. The size of the comparison is varied from k = 1 which compares
only the top alignment ranked by each of the scoring functions, to k = 25 which compares the
top 25 alignments ranked by by each of the various scoring functions. The height (on the
y-axis) of the lines within each plot can be interpreted as the level of disagreement for a given
top-k ranking, while the slope can be interpreted as indicating the general level of agreement.
Alignment scoring functions that generate a similar ranking of alignments produce flatter plots.
Note that rankings that are in complete disagreement generate plots that increase quadratically
using Spearman’s rho and Kendall’s tau, but linear using the information cost.

The selected rank comparisons in Figure 4.10 are divided into three sections. The left-hand
column is devoted to showing scoring functions that disagree substantially on how alignments
generated by a particular protein structural alignment program should be ranked. The right-
hand column shows scoring functions that substantially agree on their ranking for a given

¶There are 225 combinations of ranked lists that can be compared. All plots can be found online at
http://lcb.infotech.monash.edu.au/~jhcol1/scop_ranking_plots/.

78 CHAPTER 4. AN MML FRAMEWORK FOR ASSESSING ALIGNMENT QUALITY

alignment program. The middle-column shows shoring functions with rankings between the
above extremes.

Significant disagreement Moderate disagreement Moderate agreement

C
E

 0

 100

 200

 300

 400

 500

 600

 700

 5 10 15 20 25

P
e
r
m

u
ta

ti
o
n

 c
o
s
t

Top-k

Information Measure VS LGA-S3

Information cost
Spearman's Rho

Kendall's Tau

 0

 100

 200

 300

 400

 500

 600

 700

 5 10 15 20 25

P
e
r
m

u
ta

ti
o
n

 c
o
s
t

Top-k

Dali Z-Score VS GSAS

Information cost
Spearman's Rho

Kendall's Tau

 0

 100

 200

 300

 400

 500

 600

 700

 5 10 15 20 25

P
e
r
m

u
ta

ti
o
n

 c
o
s
t

Top-k

Dali Z-Score VS SCTRUCTAL Score

Information cost
Spearman's Rho

Kendall's Tau

D
A
L
I

 0

 100

 200

 300

 400

 500

 600

 700

 5 10 15 20 25

P
e
r
m

u
ta

ti
o
n

 c
o
s
t

Top-k

Dali Z-Score VS MI

Information cost
Spearman's Rho

Kendall's Tau

 0

 100

 200

 300

 400

 500

 600

 700

 5 10 15 20 25

P
e
r
m

u
ta

ti
o
n

 c
o
s
t

Top-k

Information Measure VS TM-Score

Information cost
Spearman's Rho

Kendall's Tau

 0

 100

 200

 300

 400

 500

 600

 700

 5 10 15 20 25

P
e
r
m

u
ta

ti
o
n

 c
o
s
t

Top-k

Information Measure VS SCTRUCTAL Score

Information cost
Spearman's Rho

Kendall's Tau

F
a
t
C
a
t

 0

 100

 200

 300

 400

 500

 600

 700

 5 10 15 20 25

P
e
r
m

u
ta

ti
o
n

 c
o
s
t

Top-k

TM-Score VS GDT-TS

Information cost
Spearman's Rho

Kendall's Tau

 0

 100

 200

 300

 400

 500

 600

 700

 5 10 15 20 25

P
e
r
m

u
ta

ti
o
n

 c
o
s
t

Top-k

SCTRUCTAL Score VS TM-Score

Information cost
Spearman's Rho

Kendall's Tau

 0

 100

 200

 300

 400

 500

 600

 700

 5 10 15 20 25

P
e
r
m

u
ta

ti
o
n

 c
o
s
t

Top-k

LGA-S3 VS GDT-TS

Information cost
Spearman's Rho

Kendall's Tau

L
G
A

 0

 100

 200

 300

 400

 500

 600

 700

 5 10 15 20 25

P
e
r
m

u
ta

ti
o
n

 c
o
s
t

Top-k

SCTRUCTAL Score VS SI

Information cost
Spearman's Rho

Kendall's Tau

 0

 100

 200

 300

 400

 500

 600

 700

 5 10 15 20 25

P
e
r
m

u
ta

ti
o
n

 c
o
s
t

Top-k

MI VS TM-Score

Information cost
Spearman's Rho

Kendall's Tau

 0

 100

 200

 300

 400

 500

 600

 700

 5 10 15 20 25

P
e
r
m

u
ta

ti
o
n

 c
o
s
t

Top-k

MI VS SI

Information cost
Spearman's Rho

Kendall's Tau

T
M
-
A
l
i
g
n

 0

 100

 200

 300

 400

 500

 600

 700

 5 10 15 20 25

P
e
r
m

u
ta

ti
o
n

 c
o
s
t

Top-k

LGA-S3 VS SCTRUCTAL Score

Information cost
Spearman's Rho

Kendall's Tau

 0

 100

 200

 300

 400

 500

 600

 700

 5 10 15 20 25

P
e
r
m

u
ta

ti
o
n

 c
o
s
t

Top-k

TM-Score VS SI

Information cost
Spearman's Rho

Kendall's Tau

 0

 100

 200

 300

 400

 500

 600

 700

 5 10 15 20 25

P
e
r
m

u
ta

ti
o
n

 c
o
s
t

Top-k

LGA-S3 VS GDT-TS

Information cost
Spearman's Rho

Kendall's Tau

Figure 4.10: Some selected examples of plots showing quantifications of the agreement between
structural alignment quality scores for the top 25 alignments between SCOP domain pairs.
The ranking is performed by the alignment quality scoring functions: the information measure,
DALI z-score, TM-Score, LGA S3, GDT TS, STRUCTAL score, MI, SI, SAS, and GSAS, on align-
ments computed by the structural alignment programs DALI, TM-Align, LGA, CE, and FatCat.
Disagreement in ranking is quantified by three measures: the Information Cost, Spearman’s ρ
correlation coefficient, and Kendall’s τ correlation coefficient (see Section 7.1).

The results from this experiment further demonstrate the clear lack of consensus observed by
Kolodny et al. (2005), Hasegawa and Holm (2009), and Slater et al. (2013). While there is some
agreement between similarly formulated scoring functions, there is no consensus and scoring
functions produce (often completely) contradictory rankings. The results of this experiment

4.9. CONCLUSIONS 79

reflect the standard dilemma human experts and scoring functions face in choosing between
two conflicting objectives: coverage and fidelity of fit.

4.9 Conclusions

The importance of finding biologically meaningful structural alignments has led to the intensive
development of methods for generating alignments and evaluating their quality. These struc-
tural alignment quality assessment methods largely define a function that mixes RMSD and the
number of correspondences after least-squares superposition (see Table 2.2). However, these
methods produce conflicting results and none has been generally accepted as clearly superior.

This Chapter explores the development of a framework for measuring alignment quality. The
framework uses the information content of messages that losslessly compress the Cα atomic
coordinates of a pair of protein structures, given a proposed alignment. A shorter message
signifies a superior alignment. Furthermore, a method to infer the position of hinge rotated
segments in a structure given an alignment is developed. This may be used in addition to
a least-squares superposition to accurately assess alignment quality. The method contains no
adjustable parameters, as it is built on a formal Bayesian principle of Minimum Message Length
inference. It has three useful statistical properties for measuring alignment quality: 1) The
difference between the lengths of the messages needed to transmit the pair of structures using
any two alignments gives the log-odds posterior ratio. Thus, allowing a comparison of alignment
quality based on message length; 2) It permits a natural test for statistical significance by
comparison to the message length required to state the two structures independently (without
an alignment hypothesis); and 3) It achieves an objective, formal trade-off between alignment
complexity and the fidelity of fit between two structures through the alignment hypothesis
based on a rigorous foundation of Bayesian statistics and MML.

The first experiment presented in this Chapter shows that the information measure is ca-
pable of distinguishing between alignments for pairs of domains that vary in their relationship
with the SCOP hierarchy. In this regard it is competitive when compared against 9 other pop-
ular structural alignment scoring functions. Examination of competing alignments over many
pairs of protein structures from the SCOP hierarchy is a sanity check. Since domain pairs at
each level of the hierarchy vary in their structural relationship, a structural alignment quality
measure should, on aggregate be able to distinguish between domain pairs at differing levels
of the hierarchy. The results show that the information measure, using the encoding schemes
described in this chapter, is able to consistently make this distinction. Secondly, a comparison
of top-k alignment quality rankings for the SCOP domain pairs by various alignment quality
scores reveals a significant degree of disagreement and contradiction. This confirms the findings
of several important reviews of the field (Kolodny et al., 2005; Hasegawa and Holm, 2009; Sippl
and Wiederstein, 2008; Slater et al., 2013; Ma and Wang, 2014).

There is no gold standard against which to measure alignment quality measures. This
makes it difficult to conclusively determine which alignment quality score is best amongst
the benchmark set of scores used in this chapter. Each scoring function performs its own
ad hoc trade-off between the competing criteria of coverage versus the quality of fit to the
structural data that manifests in the structural alignment problem. Conceptually however, the
information measure stands out from the other scoring functions in that an objective trade-off
is computed between detailed measures of coverage and fidelity. The descriptive complexity of
the alignment hypothesis versus the compression of protein structural coordinate data enabled
by the alignment hypothesis. These theoretical properties make the MML based framework for

80 CHAPTER 4. AN MML FRAMEWORK FOR ASSESSING ALIGNMENT QUALITY

measuring pairwise protein structural alignment quality a compelling choice for the development
of an alignment program in Chapter 6.

A set of encoding schemes are selected (from amongst a host of alternatives) as concise
estimates for each term in Equation 4.5. However, it is important to note that these may
not be the most concise schemes possible. A more concise encoding method, when found,
should replace the schemes suggested in this chapter. This replacement is demonstrated in
the next chapter, which identifies aspects of the encoding schemes from this chapter which are
sub-optimal and proposes methods to reduce their message length estimates.

Chapter 5

I-value: Assessing Alignment Quality
Using Information Theory

“The best explanation of facts is the shortest.”

— C. S. Wallace (2005)

This chapter introduces systematic improvements to the set of coordinate encoding schemes
used in Chapter 4. These improved encoding schemes build on the statistical models of
protein directional data developed by Kasarapu and Allison (2015). The directional models
form the basis of a sophisticated and efficient technique to define the relative position and
local geometric context of corresponding residues, and use this to compress the coordinate
data. These improved models for estimating the message length for terms in Equation 4.5
are more more efficient and concise than the old encoding schemes presented in Chapter 4.
This is demonstrated on alignment benchmark datasets and on 2500 randomly selected
domain pairs from the SCOP (Murzin et al., 1995) database.

This chapter culminates in the definition of a protein structural alignment scoring func-
tion, called I-value, based on the MML framework for alignment quality discussed in Chap-
ter 4.

This chapter is based on the paper: Collier, J. H., Allison, L., Lesk, A. M., Stuckey,
P. J., Garcia de la Banda, M., Konagurthu, A. S. (2016). Statistical Inference of Protein
Structural Alignments, In communication. Preprint available at URL: http://biorxiv.
org/content/early/2016/06/02/056598

81

82 CHAPTER 5. I-VALUE: A MEASURE OF ALIGNMENT QUALITY

5.1 Introduction

A
s discussed in Chapters 2-4, the traditional approach to formulating a protein structural
alignment scoring function involves combining the contributions of a small number of

important criteria, mainly coverage and fidelity (see Section 2.2.5). Table 2.2 showed some of
the popular scoring functions that arose in the literature, highlighting their coverage and fidelity
terms. A departure from this traditional approach is achieved by considering the structural
alignment problem as an instance of the general class of statistical and inductive inference
problems (see Section 4.3). In this light, Chapter 4 presented a statistical framework to assess
protein structural alignment quality was developed based on the information theoretic criterion
of Minimum Message Length (MML; see Section 3.3.3). In this framework, any structural
alignment, A, is a hypothesis that attempts to explain the observed Cα coordinate data of
the protein structural pair in question, 〈S, T 〉. The explanatory power of an alignment is
estimated and quantified, using statistical models of encoding, to losslessly explain the Cα

coordinate data. This chapter culminates in the definition of a protein structural alignment
scoring function, called I-value,* based this framework, the related model (orR-model) message
length is defined as:

I-value = I(A, 〈S, T 〉) = I(A)︸ ︷︷ ︸
First part

+ Inull(S) + I(T |S,A)︸ ︷︷ ︸
Second part

bits. (5.1)

And the null model message length is defined as:

Inull(〈S, T 〉) = Inull(S) + Inull(T)

For any proposed alignment, the computation of I-value and comparison with Inull(〈S, T 〉)
requires the estimation of component message length terms, I(A), Inull(S), and I(T |S,A). In
turn, the estimation of these terms requires statistical models of encoding. The development of
an initial set of models was described, and the models evaluated in Chapter 4. In this chapter,
new encoding models presented that substantially improve the estimation of these terms. To
achieve this they use using sophisticated statistical models that, among other things, capture
into a parametric form the observed distribution of protein coordinates. The improvements
made in this chapter are summarised below and will be explained in detail in Section 5.2.

Improvement to the alignment encoding model, used to compute I(A): Section 4.4 pre-
sented an adaptive encoding scheme to compute the alignment complexity term, I(A),
using a first-order Markov model. This model specifies a three-state edit machine that
can execute (with associated probabilities based on the previous state) match, insert,
and delete instructions. This three-state model is implicit in many alignment meth-
ods for biological sequences, most commonly seen in the implementation of affine gap
costs (Gotoh, 1982; Allison et al., 1992). This model is extended here to ignore the effect
of terminal gaps (insertions and deletions at the N-terminal and/or C-terminal ends of
the proteins) in the alignment. Such alignments are commonly observed when aligning a
monomeric protein with a longer dimeric protein.

Improvement to the null encoding, used to compute Inull(·): Section 4.5 presented a prac-
tical approach to compute the null model encoding length, Inull(·) of any given protein
chain. However, this model of encoding assumed a simple prior distribution on protein

*This thesis uses the terms I(A, 〈S, T 〉) and I-value interchangeably.

5.2. IMPROVED ENCODING SCHEMES FOR I-VALUE 83

Cα coordinates. Specifically, this prior assumes that the directions� of Cα atoms is uni-
form (over a unit sphere). However, the empirical distribution of the Cα directions is
non-uniform (see Figure 5.5(a)). To resolve this, this chapter modifies the null model
encoding of protein chains to employ directional probability distributions (von Mises
Fisher (Fisher et al., 1987) and Kent (Kent, 1982)) that capture the empirical distribu-
tion of Cα directional data into a parametric mixture model (Kasarapu and Allison, 2015;
Kasarapu, 2015).

Improvement to the coordinate compression encoding, used to compute I(T |S,A):
The message length term I(T |S,A) (for transmitting the coordinates of T given the knowl-
edge of the coordinates from S and the alignment A) is a potential source of compression
compared to the corresponding null model encoding term, Inull(T). Therefore, the model
used to compress the coordinates should build on and improve over the null model encod-
ing. Since the null model encoding is modified in this chapter, the coordinate compression
model also needs to be modified. Thus, this chapter presents a new coordinate compres-
sion model that builds on the parametric mixture model that is employed as the null
model. This new coordinate compression model takes into account both the global and
local structural similarity of Cα coordinates.

The remainder of this chapter is organised into two sections beginning with a description of
the improvements made to the encoding schemes mentioned above. Benchmarking is performed
between the alignment encoding schemes and between the null model encoding schemes. Fi-
nally, the chapter concludes with the performance benchmarking of I-value using the improved
encoding schemes in comparison to the old encoding schemes. The results of this comparison
show that the message length required to state coordinate data has significantly decreased.

5.2 Improved Encoding Schemes for I-value

This section describes, in detail the improvements to the encoding schemes necessary to estimate
the message length terms I(A), Inull(·), and I(T |S,A). These improvements are compared
against the corresponding encoding models described earlier in Chapter 4.� These improved
encoding schemes contribute to the final implementation of the I-value measure of protein
structural alignment quality as presented in this thesis.

5.2.1 Improvement to the Alignment Encoding Model: I(A)

As described in Section 4.4, I(A) was previously computed using a first-order Markov model
based on an adaptive code. Briefly, this model treats any order-preserving alignment A as a
string produced by a three-state machine, which at each iteration produces one of the following
state symbols: match (m), insert (i), and delete (d). See Figure 5.1.

This model has nine possible transitions between alignment states, each state transition
has an associated probability. If the probabilities were known a priori (by the receiver), then
the statement cost of each state transition is the negative logarithm of the probability of that
transition (see Figure 5.1). However, in reality, the receiver does not know these probabilities

�Recall that any (x, y, z) coordinates of a Cα atom can be reparameterised as (r, 〈θ, φ〉) using an internal
(and canonical) spherical coordinate system, where 〈θ, φ〉 gives the direction of the Cα atom. See Section 4.5.

�The rest of this chapter will use the term improved to refer to the encoding schemes described in this
chapter, and old to refer to the best (final) encoding schemes presented in Chapter 4.

84 CHAPTER 5. I-VALUE: A MEASURE OF ALIGNMENT QUALITY

Figure 5.1: A three-state
automata, with transition
probabilities marked, used
for adaptive first-order
Markov encoding of an
alignment. Symmetrical
transition probabilities
are enforced according to
the constraints listed on
the right. Repeated here
(from Figure 4.2) for easy
reference.

m

Pr(mm)

i

Pr(im)

Pr(ii)

d

Pr(dm)

Pr(di)

Pr(dd)

Pr(mi) Pr(md)

Pr(id)

Constraints:
Pr(mi) = Pr(md)
Pr(im) = Pr(dm)
Pr(di) = Pr(id)
Pr(ii) = Pr(dd)

in advance and, therefore, the encoding method infers these probabilities adaptively (based on
the information available at the receivers end).

Although this encoding scheme is highly practical and useful in estimating alignment com-
plexity, it can lead to a large overestimation of the I(A) term, in alignments that have long
terminal gaps. Importantly, long terminal gaps are rather common when comparing and align-
ing proteins. As seen in Section 2.1.4, protein domains represent the fundamental evolutionary
units in proteins. It has been well studied that the underlying genes coding for protein do-
mains often undergo duplication in evolution (Björklund et al., 2006). This can lead to new
evolutionary units (termed super-domains) that are larger and composed of single protein do-
mains (Richardson, 1981). Aligning proteins where one or both contain a super-domain result
in alignments containing long terminal gaps. Therefore, a small loss of efficiency in estimating
the message length, I(A), when no (or small) terminal gaps are present is acceptable when a
large improvement can be found for the general case of alignments containing large terminal
gaps.

N-terminal gaps︷ ︸︸ ︷
iiiiiii...i︸ ︷︷ ︸

regex: i{l1}

ddddddd...d︸ ︷︷ ︸
regex: d{l2}

matched region︷ ︸︸ ︷
mmmmiiidmm...dddmmm︸ ︷︷ ︸

regex: .?

C-terminal gaps︷ ︸︸ ︷
iiiiiii...i︸ ︷︷ ︸

regex: i{l3}

dddddd...d︸ ︷︷ ︸
regex: d{l4}

Figure 5.2: An example alignment finite-state automata string containing long terminal gaps.
Such an alignment can be conceptually broken into three parts separated by the first and last
match state in the whole alignment. Reading left to right, these parts are: (1) the N-terminal
gaps with a regular expression of the form i{l1}d{l2}, preceding the first match, (2) the matched
region between the first and last match states, and (3) C-terminal gaps with a regular expression
of the form i{l3}d{l4} succeeding the last match state. Note (l1, l2, l3, l4) represent the lengths
of inserts and deletes in the N- and C-terminal parts of the alignments respectively, and
they all take values ≥ 0.

A minor improvement to the previously proposed encoding scheme makes it more expressive
in the presence of large terminal gaps (leading to shorter I(A) terms). Figure 5.2 provides an
illustration that underpins the improvement described below. Any given alignment state string
is split into three non-overlapping regions as follows:

1. The N-terminal gaps preceding the first match in the alignment, with l1 ≥ 0 inserts and
l2 ≥ 0 deletes.

5.2. IMPROVED ENCODING SCHEMES FOR I-VALUE 85

2. The matched region of the alignment between the first and the last match states.

3. The C-terminal gaps succeeding the last match state in the alignment, with l3 ≥ 0 inserts
and l3 ≥ 0 deletes.

In the context of the above segmentation, consider a hypothetical communication where the
transmitter wants to send the full alignment state string to the receiver. The transmitter begins
by sending the set of four integers (l1, l2, l3, l4), representing the lengths of insert and delete

runs on either side the matched region. These integers are encoded using the log ∗ integer
code (see Section 3.4). This allows the receiver to reconstruct the alignment state string to the
following extent (given as a regular expression): i{l1}d{l2} .* i{l3}d{l4}.

Subsequently, the transmitter can send the remaining matched region (between the first and
the last match) using the same approach as previously described in Section 4.4. This involves
sending the length (|A| −

∑4
i=1 li) of the matched region using the log ∗ code, followed by the

state string of the matched region using the adaptive code described in Section 4.3.
To illustrate the effectiveness of this improved method over the adaptive code from Sec-

tion 4.4, consider the hypothetical case of a comparison between a single domain protein (con-
taining 100 residues), A versus a two domain protein (with 200 residues), B. Assume that the
C-terminal domain of B matches exactly with A. The alignment state string, using a regular
expression, would be of the form: i{100}m{100}. If only the C-terminal domain of B were
considered, then the alignment state string would be m{100}. Now consider the I(A) terms for
these two alignments as computed by the old adaptive code. The former alignment with the
long terminal gap gives I(A) = 38.2 bits, while the latter alignment without the long terminal
gap gives I(A) = 24.8 bits. Now compare these values with the improved version, where the
former gives I(A) = 34.2 bits and the latter gives I(A) = 22.8 bits, yiexlding a significant
improvement.

The same applies to real world alignments. Consider, for example, an alignment produced
by the DALI alignment program (Holm and Sander, 1993) between the structures of succinyl-
CoA synthetase from wild boar (wwPDB 1EUD-A; 305 residues; 2 domains) and the glutamate
mutase enzyme from C. Cochlearium bacteria (wwPDB 1CCW-A; 137 residues; 1 domain). DALI
aligns the N-terminal domain of wwPDB 1EUD-A with wwPDB 1CCW-A, leaving 130 gaps before
the first match state in the alignment. The matched region extends for the remainder of the
alignment and there are no C-terminal gaps. In this case, the old adaptive code encodes I(A) in
165.1 bits, the improved version encodes I(A) in 143.5 bits. This is a significant improvement.

Time Complexity for Computing I(A)

Given an alignment A, the lengths (l1, l2, l3, l4) can be determined in O(|A|)-time. As seen in
the previous chapter (see Section 4.4) the encoding of a substring of A defining the matched
region between the first and the last match states, takes time linear in the substring length.
This also takes O(|A|) time in the worst case. If the sizes of the pair of structures 〈S, T 〉
are such that |S| ≤ |T | = n, the maximum value |A| can take is |S| + |T | ≤ 2n. Therefore,
the computational complexity of the improved I(A) grows linearly with the sizes of the two
structures.

Quantitative Evaluation of the Improvement to I(A) Estimation

The old and improved alignment encoding scheme to estimate I(A) are quantitatively compared
using a large set of benchmark alignments provided by the SABmark (Walle et al., 2005)

86 CHAPTER 5. I-VALUE: A MEASURE OF ALIGNMENT QUALITY

database which provides 29, 759 pairwise structural alignments at the time this evaluation was
conducted in May, 2016.

Each alignment was encoded using the old adaptive first-order Markov scheme from Sec-
tion 4.4 and the improved version of this encoding model presented above. The results are
displayed as notched box-and-whisker plots to show the distribution of encoding lengths in
Figure 5.3.

Old Improved
0

50

100

150

200

250

300

350

400

I(
A

):
 A

li
g

n
m

e
n

t
m

e
s
s
a
g

e
 l
e
n

g
th

 (
in

 b
it

s
)

Old Improved
0

50

100

150

200

250

300

350

400

I(
A

):
 A

li
g

n
m

e
n

t
m

e
s
s
a
g

e
 l
e
n

g
th

 (
in

 b
it

s
)

(a) (b)

Figure 5.3: A comparison between the improved alignment encoding scheme (Improved) pre-
sented in Section 5.2.1, and the purely adaptive (Old) version of the first-order Markov align-
ment encoding scheme presented in Section 4.4. (a) Comparison between encoding schemes on
the entire SABMark benchmark alignment set. (b) Comparison between the above alignment
encoding schemes on SABMark filtered for large terminal gaps.

Based on these results it the Segmented Adaptive Markov encoding scheme provides very
slightly worse compression on the entire SABMark benchmark alignment set (see Figure 5.3(a).
The Old scheme has a median encoding length for I(A) of 111.3 bits with an inter-quartile
range (IQR) of 68.09 bits. The Improved version achieves a median encoding length for I(A)
of 112.0 bits with an IQR of 68.08 bits. 0.7 bits worse. However, when filtering SABMark for
long terminal gaps (Figure 5.3(b), the difference is reversed. On this data, the Old scheme
achieves a median estimate for I(A) of 246.7 bits with an IQR of 78.3 bits in contrast with the
Improved model which achieves a median estimate for I(A) of 243.0 bits with an IQR of 71.4
bits. This is a small improvement of approximately 4 bits. The improved method overcomes the
disadvantage of the old approach on alignments containing long runs terminal gaps. Therefore,
this improved encoding scheme is used by I-value and for the remainder of this
thesis.

5.2.2 Improved Estimation of the Null Model Message Length: Inull(·)
This section describes a new null model scheme to encode protein Cα coordinate chains which
modifies the corresponding encoding scheme defined in Section 4.5. Recall that, for an ordered
set of Cα coordinates within a protein chain, the Cartesian coordinate of each Cα, ~v = (x, y, z)
was transformed into ~v = (r, 〈θ, φ〉), an internal and canonical spherical coordinate system,
where 〈θ, φ〉 ≡ v̂ represents the direction of the Cα vector on a unit-sphere.

5.2. IMPROVED ENCODING SCHEMES FOR I-VALUE 87

The encoding scheme for the null model description of coordinates in Section 4.5, trans-
mitted (näıvely) the direction of each Cα over a uniform distribution. However, in reality
the empirical distribution of directions between Cα coordinates is anything but uniform (see
Figure 5.5(a)).

Recently, using an MML-based unsupervised learning approach, (Kasarapu and Allison,
2015) proposed a rigorous method to infer probabilistic mixture models on directional data
that is distributed on Riemannian manifolds, mainly n-dimensional sphere and torus (Kasarapu,
2016). Their unsupervised learning technique was also applied to modelling protein Cα direc-
tional data using von Mises-Fisher and Kent probability distributions. This resulted in two
separate mixture models, each elegantly encapsulating into a parametric form the underlying
empirical distribution of Cα directions.

The proposed improvement to the null model results from employing these mixture models,
since they allow for the assessment of (1) the likelihood of any direction of a Cα coordinate,
and through this (2) the null model statement cost of each coordinate along the chain. These
details are explained below. However, before the improved null model encoding is described, a
brief background on probabilistic mixture models is provided, along with a description of the
mixture models inferred by Kasarapu and Allison (2015).

Background on Mixture Models

Often, when dealing with real-world data, it is not possible to accurately describe the distri-
bution of this data using a single probability density function. Instead, the data should be
considered to have come from a mixture of sub-populations (see Figure 5.4). This is a concept
known as mixture modelling (McLachlan and Basford, 1987).

Figure 5.4: An example of a mixture density (in black)
with two gaussian distribution components. The data
is taken from the second dataset at the WWW address:
http://www.maths.bris.ac.uk/∼peter/mixdata (Richardson
and Green, 1997).

Formally, a mixture model is a probability density function (PDF) resulting from a linear
combination of the probability densities from component distributions of the form:

M(v̂; ~Θ) =

|M|∑
k=1

wkfk(v̂; ~ϑk) (5.2)

In the above equation, v̂ represents the random variable, M represents the mixture model
containing |M| component distributions of the form fk(.). Each component PDF, fk(.) (with

parameters ~ϑk) is weighted with a probability, wk, according to the proportion of the data it

explains, such that
∑|M|

k=1 wk = 1. Finally, ~Θ represents the vector of mixture model parameters
~Θ = {|M|, {(wk, ~ϑk)∀1≤k≤|M|}}.

Mixture Models of Kasarapu and Allison (2015)

Recent work by Kasarapu and Allison specifically deals with the modelling of multi-modal
directional 〈θ, φ〉 data from protein Cα coordinates. In particular, the work considered the
MML estimation of probabilistic mixture models containing component PDF terms composed
of either entirely three-dimensional (3D) von Mises-Fisher (vMF) distributions or entirely Kent

88 CHAPTER 5. I-VALUE: A MEASURE OF ALIGNMENT QUALITY

distributions (Fisher et al., 1987; Kent, 1982). This resulted in two separate mixture models,
each of which proposes a probability distribution for the directional data of protein Cα atoms
along any protein chain. Specifically:

vMF mixture model (Kasarapu and Allison, 2015), represented as MvMF is a model
with 35 component von Mises-Fisher probability density functions. Each vMF distri-
bution defines contours of equal probability densities that are circular on the surface of
a three-dimensional unit-sphere. Using the notations in Equation 5.2, each fk in this
mixture model is a probability density function with three free parameters of the form:

f(v̂; ~ϑ) =
1

c(κ)
exp (κ(µ̂ · v̂))

where v̂ is the random variable, ~ϑ = (µ̂, κ) is a vector of parameters containing the mean
direction µ̂ and the concentration parameter κ, and (µ̂·v̂) defines the dot product between
the two unit vectors. Finally, c(κ) is the normalisation constant of the PDF defined as

c(κ) =
4π sinh(κ)

κ
, where sinh(.) is the hyperbolic sine function.

Kent mixture model (Kasarapu, 2015), represented byMKent is a model with 23 compo-
nent Kent probability density functions. A Kent distribution generalises vMF distribution
and defines contours of equal probability densities that are elliptical (rather than circular)
on the surface of the unit-sphere. Again, using the notations in Equation 5.2, each fk in
this mixture model is a probability density function with five free parameters of the form:

f(v̂; ~ϑ) =
1

c(κ, β)
exp

(
κ(γ̂1 · v̂) + β

[
(γ̂2 · v̂)2 − (γ̂3 · v̂)2

])
where v̂ is the random variable, ~ϑ = (γ̂1, γ̂2, γ̂3, κ, β) is a vector of parameters containing
an orthogonal system of unit vectors, (γ̂1, γ̂2, γ̂3), that require only three parameters to
define, concentration parameter, κ, and a parameter that controls the eccentricity of the
elliptical contours β. The various terms of the form, (γ̂i · v̂) (for 1 ≤ i ≤ 3) define the
various dot products. Finally, c(κ, β) is the normalisation constant of the PDF defined
as:

c(κ, β) = 2π
∞∑
i=0

Γ(i+ 1
2
)

Γ(i+ 1))
β2i

(
2

κ

)2i+ 1
2

I2i+ 1
2
(κ)

where Γ(.) are Gamma functions, and Ik(.) is the modified Bessel function of the first
kind of order k (Mardia and Jupp, 1999).

The fidelity of these two mixture models to accurately represent, in a parametric form, the
entire empirical distribution of directional data of protein coordinates being modelled is shown
in Figure 5.5. The individual components are represented in Figure 5.5(d-e), where contour
lines encompassing 80% of the probability mass of each of the components are projected on a
(θ, φ)-plane.

Note that there are two prominent peaks visible in Figure 5.5(a). The tallest at approxi-
mately θ = 60o, φ = 90o corresponds to Cα coordinates belonging to helical secondary struc-
tures. The smaller peak at approximately θ = 120o, φ = 300o corresponds to strand secondary
structures (see Section 2.1.1).

5.2. IMPROVED ENCODING SCHEMES FOR I-VALUE 89

(a)

(b) (c)

Longitude φ

0 60 120 180 240 300 360

C
o
-l
a
ti
tu

d
e

θ

15

35

55

75

95

115

Longitude φ

0 60 120 180 240 300 360

C
o
-l
a
ti
tu

d
e

θ

15

35

55

75

95

115

(d) (e)

Figure 5.5: Fidelity of the 35-component vMF mixture model and the 23-component Kent mix-
ture models. (a) The empirical distribution of directional data of Cα atoms. The 3D plot shows
the frequencies of the observed directions of Cα atoms, 〈θ, ψ〉 denoting 〈co-latitude, longitude〉.
(b) Shows the probability density defined by the 35-component vMF mixture model (Kasarapu
and Allison, 2015). (c) Shows the probability density defined by the 23-component Kent mixture
model (Kasarapu, 2015). Contour lines on (d) vMF mixture components and (e) Kent mixture
components overlaid on empirical protein directional data. One equi-probability-density con-
tour is shown (in black) for each of the components in the respective mixture models. Each
contour encloses 80% of the associated component’s probability mass. Note that the black
contours are distorted due to planar projections of circular (for vMF) and elliptical (for Kent)
contours on a spherical surface.

90 CHAPTER 5. I-VALUE: A MEASURE OF ALIGNMENT QUALITY

Figure 5.6: The direction 〈θj, φj〉 = 〈co-latitude, longitude〉 of any Cα atom ~cj is computed as
follows: the coordinates of the tetramer {~cj,~cj−1,~cj−2,~cj−3} are translated and rotated such
that cj−1 is at the origin, cj−2 lies on the negative x-axis, and cj−3 lies on the −x,+y quadrant
of the xy-plane. The co-latitude θj of ~cj is then defined my measuring the angle between ~cj
and the z-axis. The longitude φj is measured as the angle between the projection of ~cj onto
the xy-plane and the x-axis.

This chapter employs each of these mixture models (Mvmf andMkent) to define an improved
null model encoding scheme. They are compared against the old null model encoding scheme
(see Section 4.5) later in this section.

Null Model Encoding of Protein Chains Using Directional Mixture Models

For any protein chain containing Cα coordinates represented as C = {~c1,~c2, · · · ,~cn}, the im-
proved null model encoding uses the following procedure. The number of coordinates in C
is first transmitted over a log∗ integer code, as in Equation 3.4, taking Ilog∗(|C|) bits. This
is followed by the transmission of coordinates, using either MvMF or MKent mixture models.
Before this, the first three coordinates {~c1,~c2,~c3} are transmitted exactly as previously carried
out in Section 4.5.§

The transmission of each subsequent Cα atom, ~cj ≡ (xj, yj, zj), is performed by transforming
it into the equivalent (rj, 〈θj, φj〉) (relatively-defined) spherical coordinates, where rj is the
distance (or radius) of ~cj defined from the previous Cα coordinate in the chain, ~cj−1, and the
pair, 〈θj, φj〉 gives the direction (ĉj) of ~cj, measured relative to the canonical orientation defined
by the preceding three transmitted coordinates, ~cj−1,~cj−2,~cj−3. The canonical orientation is
illustrated in Figure 5.6.

The distance, rj, is transmitted as before (see Section 4.5), based on the observation that
the successive Cα-Cα distance is highly constrained (see Section 2.1.5). Therefore, each rj can
be efficiently encoded over a Normal distribution with parameters µ ± σ = 3.8 ± 0.2Å, to a
precision of statement of ε = 0.001 (see Section 3.3.3). Using this scheme, Equation 4.6 gave
the length of the code required to transmit rj using this method as:

Iradius(rj) = − log2(ε · N (rj;µ, σ)) bits.

The receipt of this distance information by the receiver reduces the uncertainty regarding the
position of ~cj by constraining it to be on the surface of the sphere with a radius of rj, and
centered at ~cj−1. For the receiver to fully determine the position of ~cj the direction, 〈θj, φj〉, of
~cj must still be encoded.

Previously in Section 4.5, each direction, 〈θj, φj〉 ≡ ĉj, was encoded under the assumption
that it is uniform on the surface a unit sphere. In this chapter, each direction ĉj can be encoded
using one of theMvMF andMKent mixture models. From Equation 5.2, the length of the code

§This is because the encoding scheme here requires a context from the preceding three coordinates.

5.2. IMPROVED ENCODING SCHEMES FOR I-VALUE 91

required to specify the direction, ĉj, is computed as:

Idirection(ĉj ≡ 〈θj, φj〉 |M) = − log2(ε2 ·M(ĉj; ~Θ)) = − log2(ε2 ·
|M|∑
k=1

wkfk(ĉj; ~ϑk)) bits. (5.3)

where M is either Mvmf or Mkent, and ε = 0.001 is the precision of statement of data.
Combining the statement cost to transmit the number of coordinates, and the code lengths

described in Equations 4.6 and 5.3, the null model message length to transmit an entire chain
of successive Cα coordinates, C = {~c1, · · · ,~cn}, is given by:

Inull(C) = Iinteger(n) +
n∑
j=1

Iradius(rj) + Idirection(〈θj, φj〉 |M) bits. (5.4)

Finally, using the above, the null model message length to transmit two structures 〈S, T 〉 is
simply:

Inull(〈S, T 〉) = Inull(S) + Inull(T) bits.

Time Complexity of Computing Inull(.)

The computation of the null model message length for any chain of Cα coordinates with n
atoms requires O(n) effort. This is because the computation of each Idirection(ĉj|M) requires
computing the likelihood of ĉj, given each component density function in the null mixture.
The mixture models contain a constant (|MKent| = 23; |MvMF| = 35) number of component
probability density functions. Thus, the likelihood for each ĉj can be computed in constant
time. Similarly, the computation of Iradius(rj) of each Cα atom is also a constant time operation.
Therefore, over all n atoms, the computation of the null model message length of a given chain
is O(n).

Quantitative Evaluation of the Improvement to Inull(.)

The null model message length derived from employing the MvMF and MKent mixture models
are compared below against each other, and also against the corresponding (uniform-sphere)
encoding method described previously in Section 4.5. This comparison is performed on the
aggregate collection of 3000 randomly selected protein domains from the SCOP (Murzin et al.,
1995) database (see Section 4.8.1). The method used to select these domains and a list of them
is available in Appendix A.

For each domain in the collection, the null model message length terms (Inull(.)) are com-
puted using the three encoding schemes: (1) the old uniform-direction model (see Section 4.5);
(2) the improved null model using the vMF mixture (MvMF); and (3) the improved null model
using the Kent mixture (MKent). Each of these message length terms are divided by the num-
ber of Cα atoms in the domain, yielding a useful descriptive statistic, average bits-per-Cα, to
compare the three null encoding schemes.

The variance of this (bits-per-Cα) descriptive statistic across the three encoding schemes for
all 3000 SCOP domains can be visually compared in Figure 5.7 using notched box-and-whisker
plots. The most striking observation is that the uniform null model varies very little about the
median value of 37.16 bits. This is because the radius (rj) of successive Cα atoms is highly
constrained around 3.8Å. Therefore, the radius terms take approximately 9.7 bits to state (see
Equation 4.6). Subsequently, encoding each direction term (〈θj, φj〉) uniformly on a sphere with

92 CHAPTER 5. I-VALUE: A MEASURE OF ALIGNMENT QUALITY

Old vMF Mixture Kent Mixture

35

40

45

50

55

60

65

A
v

e
ra

g
e

 (
P

e
r

C
α

)
N

u
ll

 m
e

s
s

a
g

e
 l

e
n

g
th

 (
in

 b
it

s
)

Null model message length statistics

Figure 5.7: Comparison of the average Inull(.) on a per-residue basis between the improved null
model encoding schemes (using eith the mixture of vMF or Kent distributions) and the old
(uniform-sphere) null model encoding scheme, using 3000 randomly selected SCOP domains.
The y-axis shows the average message length to encode a Cα atom using the various null model
encoding schemes.

radius of about 3.8Å (see Equation 4.7) takes close to log2

(
4π(3.8)2

(0.001)2

)
= 27.5 bits to state. The

sum of both the radius and direction statement costs has an average value of 37.2 bits-per-Cα

atom using the uniform-direction null model. This result has very little variance based on the
uniform direction assumption.

The improvement, as measured by the bits-per-Cα statistic, is categorical. The improved
null encoding scheme, using either the MvMF or MKent mixture models, usually encodes Cα

coordinate data using a shorter message than the uniform-direction null model. The mixtures
are modelling the observed non-uniform and multi-modal directional distribution of consecutive
Cα atomic coordinates better than the Old model. The median values for the improved null
encoding scheme when usingMvMF andMKent are nearly identical (35.39 and 35.37 bits-per-Cα

respectively), saving about 1.8 bits over the uniform-direction null model, for every Cα atom
encoded. This results in a large improvement, for example, a chain containing 100 residues
could be stated, using the improved null model encoding scheme, with a message 180 bits
shorter than the message length obtained by the Old uniform-direction scheme.

The interquartile range (IQR) for the mixture models is much greater (compared to the
uniform-direction model) as would be expected with a non-uniform distributions of directions.
This is because, over the collection of protein domains, the model is bound to encounter Cα

coordinates that are distributed in high probability regions, for example, when they are a part
of helices and strands, and hence require shorter message lengths. On the other hand, there will
be Cα coordinates that fall within the lower probability regions (unstructured coils), yielding
longer code lengths. However, as can be seen from Figure 5.7, the null encoding using mixture
models is vastly more concise than the uniform-direction model in general.

Comparing MvMF and MKent, the Kent mixture has the median message length, of 35.37
bits-per-Cα, with the IQR covering 2.07 bits. This is nearly identical to the message length
values from the vMF mixture model with a median of 35.39 bits-per-Cαand an IQR of 2.09

5.2. IMPROVED ENCODING SCHEMES FOR I-VALUE 93

bits. The almost identical performance of the two mixture models is expected, since they have
been inferred by Kasarapu and Allison (2015) on the same empirical directional data. Since
the Kent distribution generalises (and subsumes) the von Mises-Fisher distribution, it is able to
explain the underlying data in fewer number of components (in comparison with vMF mixture),
although each region of the θφ-plane between the two models has nearly identical probability
densities (see Figure 5.5(b-c)).

5.2.3 Improved Estimation of the Coordinate Compression Model:
I(T |S,A)

The coordinate compression model relies on efficiently encoding the Cα coordinates in T using
the coordinate information from S (transmitted as a null model message in Inull(S) bits; see
Section 5.2.2) and the alignment information (transmitted as a three-state string in I(A) bits;
see Section 5.2.1).

As described earlier (see Section 4.6), this transmission is only concerned with the coordi-
nates in T . This implies that the coordinate compression model (used when transmitting the
coordinates in T) is only interested in the insert (i) and match (m) states in the alignment.
Each Cα atom in T is either aligned with some Cα coordinate in S, or is left unaligned in the
alignment. Therefore, T can be partitioned into successive blocks alternating between regions
that are aligned with S and those that are left unaligned. In this case, a block means any run
of successive Cα coordinates in T that are all either aligned or unaligned based is the A.

Let each chain of successive coordinates in T corresponding to the insert (i) states in the
alignment be denoted by Ik, and let there be m such unaligned blocks of coordinates in T (of
varying chain lengths). The coordinates in each (unaligned) block Ik is transmitted using the
null model method described in Section 5.2.2. The coordinates in the chain corresponding to
each unaligned block takes Inull(Ik) bits to state. Observe that since these unaligned coordinates
are stated over the null model, they offer no compression with respect to their encoding using
the null model. The code length to transmit all of these runs of unaligned coordinates, Ik, in
T is:

Iunaligned(T |S,A) =
m∑
k=1

Inull(Ik)

Therefore, the potential source of compression when stating the coordinates in T efficiently,
can only come from describing the matched Cα coordinate blocks. This builds on the infor-
mation from the corresponding coordinates in S, with which they are aligned (according the
information in A). In the improved model, the code length to state these matched coordinates
in T , using the corresponding coordinates in S, relies on a combination of two encoding schemes.
The first takes into account the global structural similarity of the matched coordinates between
S and T , and is called the global model of encoding. The second takes into account the local
directional similarity of the corresponding Cα atoms in S and T , and is called the local model
of encoding.

Encoding the Aligned Coordinates Using the Global Model

To compute the code length required to state the coordinates of Cα atoms using the global
model, the following procedure is employed. The transmitter begins by performing a least-
squares superposition of S and T based on the correspondences defined by the alignment A.
Let ~tj ∈ T denote the coordinate being encoded using the global model, which is assigned

94 CHAPTER 5. I-VALUE: A MEASURE OF ALIGNMENT QUALITY

correspondence with ~si ∈ S according to the alignment A. For convenience, assume ~si and ~tj
are the transformed coordinates after least-squares superposition.

The resultant set of residuals (norm of the error vectors) {δij}’s between the superposed
pair si and tj is transmitted over a chi distribution (with three degrees of freedom) using the
MML method (see Section 3.3.3).¶ The transmitter then encodes the set of distances {rj}’s
between successive tj−1 and tj, as before, over a Normal distribution centered at 3.8±0.2Å (see
Equation 4.6).

The information from δij and rj permits the construction of two spheres, one centered at
~tj−1 and the other at ~si. These two spheres will intersect in a circle,� thereby reducing the
uncertainty of ~tj to lie on the circle of intersection. Given this, the coordinates of ~tj can be
transmitted over a uniform distribution on the circle. Figure 5.8 gives an example of this
encoding scheme, containing all of the elements described in this section.

Figure 5.8: An illustration of the global model for encoding the coordinate ~tj as a deviation
with respect to ~si. The receiver is sent δij and rj which define a circle derived from inter-
secting spheres centered at ~si and ~tj−1. The transmitter then states the position of ~tj on the
circumference of the circle of intersection between the two spheres.

To summarise, stating each matched ~tj requires three pieces of information. First, the
radius, rj, which is stated over a normal distribution. Next, the residual δij with respect to the
corresponding ~si stated using a chi distribution. Finally, the statement of the position of ~tj on
the circumference of this circle of intersection between two spheres using a uniform distribution.

¶This is the most natural choice because the component-wise error terms (∆x,∆y,∆z) of each corresponding
pair of coordinates, after least-square superposition, is best modeled over a symmetric 3D normal distribution
N (′, σ), where σ is the RMSD after least-squares superposition. The distribution implies that the norm of the
error vectors (

√
(∆x2 + ∆y2 + ∆z2)) over all the residual terms is best modeled using the chi distribution.)

�ignoring the pathological case when ~tj−1 = si or in the best case when ~si = ~tj

5.2. IMPROVED ENCODING SCHEMES FOR I-VALUE 95

The message length required to state each ~tj ∈ T , encoded using the coordinate information of
its matched ~si ∈ S, using the global model of encoding takes Iglobal(~tj|~si) bits.

Encoding Aligned Coordinates Using the Local Model

The local encoding model explores the compression of ~tj ∈ T based on the similarity of the
direction of its matched ~si ∈ S. This model builds directly upon the concepts used by the
null encoding model in that the position of tj is encoded relative to tj−1 using a distance and
a direction. This is achieved by redistributing the mixture model probability mass around
the direction of ŝi. This ensures that directions near ŝi are more probable (see example in
Figure 5.9). The distance, rj, between tj−1 and tj is encoded over a Normal distribution, as
before (see Equation 4.6), centered at 3.8± 0.2Å in Iradius(rj) bits.

Recall from Equation 5.2 that the null mixture model is of the formM =
∑|M|

k=1wk · fk(~ϑk),
where wk is the weight (or probability) of the kth component probability distribution. By the
total probability theorem,

∑
k wk = 1. In either the MvMF or MKent mixture model, each

component is a directional (vMF or Kent respectively) probability density function.
If no (extra) information were available about ~tj, then the transmitter would have no choice

but to encode it using the null model taking Inull(()~tj) bits. However, extra information is
available in the form of the correspondence of ~tj with ~si. Therefore, the probability wk of each
component can be systematically updated using Bayes’ theorem based on this relationship.
That is, the probabilities, wk, can be systematically updated given the expectation that ~tj is
correlated with ~si, as they are aligned.

Consider the computation of the posterior probability of the kth component distribution
given the direction ŝi, Pr(Componentk|ŝi):

w′k(unnormalised)︷ ︸︸ ︷
Pr(Componentk|ŝi) =

wk︷ ︸︸ ︷
Pr(Componentk)

likelihood︷ ︸︸ ︷
Pr(ŝi|Componentk)

Pr(ŝi)︸ ︷︷ ︸
constant over all mixture model components

Note that Pr(Componentk) is equal to wk in the null model and Pr(ŝi|Componentk) is

the likelihood** of the direction ŝi given the component probability density function, fk(ŝi|~ϑk)
using the null mixture model M ∈ {Mvmf ,Mkent}. Though Pr(ŝi) (prior on the data) is
unknown, it gets algebraically eliminated from the equation when the posteriors (or unnor-
malised w′k) are normalised so that for the normalised posteriors

∑
k w
′
k = 1. Therefore, each

Pr(Componentk|ŝi) is normalised by dividing with
∑|M|

k=1 Pr(Componentk|ŝi).
The null weights, wk are now replaced with the new normalised posterior weights, w′k, in

the null mixture model M. Thus, the coordinate ~tj can now be encoded using the posterior-
reweighted mixture model component probabilities, w′k, in the context of the matched ~si coor-
dinate information.

This results in a new posterior reweighted mixture model,M′, to encode the direction of ~tj
using the direction of ~si. This new mixture model is as follows:

M′ =

|M|∑
k=1

w′k · fk(~ϑk)

**Likelihood can be computed in constant time.

96 CHAPTER 5. I-VALUE: A MEASURE OF ALIGNMENT QUALITY

Using this reweighted mixture model, the direction t̂j can be encoded in: Idirection(t̂j|M′) bits.
Therefore, from the above and Equation 4.6, the message length required to encode ~tj ∈ T
(aligned with ~si ∈ S) using the local encoding model is:

Ilocal(~tj|~si,M′) = Iradius(rj) + Idirection(t̂j|M′) bits. (5.5)

The effect of posterior-reweighting of component probabilities in the mixture model is illus-
trated in Figure 5.9. The left column (Figure 5.9(a)), shows 10,000 random directions sampled
from the 35-component vMF mixture model inferred by Kasarapu and Allison (2015). The
top row shows the planar view with contour lines from the vMF mixture model components
projected onto the plot of sampled data (already shown in Figure 5.5(d)), and the bottom row
shows the directional data distributed onto a sphere. Posterior reweighting causes a redistri-
bution of probability mass around the direction, ŝi. Figure 5.9(b) shows the effect of posterior
reweighting around an ŝi in part of a helical secondary structure, and Figure 5.9(c) shows
posterior reweighting around an ŝi in part of a strand secondary structure.

Longitude φ

0 60 120 180 240 300 360

C
o
-l
a
ti
tu

d
e

θ

15

35

55

75

95

115

Longitude φ

0 60 120 180 240 300 360

C
o
-l
a
ti
tu

d
e

θ

15

35

55

75

95

115

Longitude φ

0 60 120 180 240 300 360

C
o
-l
a
ti
tu

d
e

θ

15

35

55

75

95

115

(a) (b) (c)

Figure 5.9: The effect of posterior reweighting on a null directional mixture distribution. The
top shows sampled data (in color) from the mixture distribution with overlaid mixture com-
ponent contours (in black). The bottom row shows the same sampled data projected onto a
sphere. (a) Data sample fromMvMF. (b) Data sampled fromM′

vMF after posterior reweighting
into a helical secondary structure. (c) Data sampled fromM′

vMF after posterior reweighting into
a strand secondary structure. Note the grouping of the probability mass around the expected
direction.

For example, assume that the matched coordinate, ~si ∈ S, had the direction, ŝi ≡ 〈θ = 90◦, φ = 50◦〉.
This will result in the reweighting according to the local encoding scheme, which is shown
in Figure 5.9(b). In this case, the majority of the component probability is distributed at
the components near ~si, as indicated by the tight clustering of the sampled directions from
the posterior-reweighted mixture model. Another example is shown in Figure 5.9(c) where

5.2. IMPROVED ENCODING SCHEMES FOR I-VALUE 97

ŝi ≡ 〈θ = 60◦, φ = 210◦〉. In this case, the vMF components in this area are not so tightly con-
centrated and thus, the sampled data from the reweighted mixture distribution are relatively
more diffused compared to the previous example.

In summary, the general essence of posterior-reweighting of the component probabilities is
to ensure that the probability density of the mixture model is systematically reshaped to be
more focused around the observed direction, ŝi. Given that ~tj is aligned with ~si, this will ensure
that the directions near ŝi become more probable, as seen in Figure 5.9. This leads to shorter
code lengths to encode ~tj. On the other hand, if ~tj is misaligned with ~si, the directions will
drift away from each other, yielding longer code lengths.

Combing the Global and Local Models to Encode Matched ~tj ∈ T

A combination of both the local and global encoding methods as described above is used
to encode any aligned ~tj ∈ T . A 50%-50% two-component mixture model is defined using
the global and local encoding as follows. The probability of ~tj under the global model of

encoding can be computed as Prglobal(~tj) = 2Iglobal(~tj). Its probability under the local model

can be computed as Prlocal(~tj|~si,M′) = 2Ilocal(~tj |~si,M′). This allows for the definition of a two
component mixture model with equal (50%-50%) weights by:

Praligned(~tj|~si) = 0.5 Prglobal(~tj|~si) + 0.5 Prlocal(~tj|~si,M′).

The code length to state each aligned ~tj can be computed from above as log2(Praligned(~tj|~si)).
For all the aligned coordinates, the code length to state these coordinates in T takes:

Ialigned(T |S,A) =
∑

∀(~si↔~tj)∈A

log2(Praligned(~tj|~si))

Thus, the message length term I(T |S,A) under this improved model of encoding takes:

I(T |S,A) = Iunaligned(T |S,A) + Ialigned(T |S,A) bits.

Time Complexity of Computing I(T |S,A)

The global model of encoding requires the least-squares superposition of the matched coordi-
nates between S and T . The maximum number of matched coordinates in any A is bounded
by N = min(|S|, |T |). The computational effort to find the best superposition under the least-
squares measure is worst-case O(N) (see Section 2.2.3).

For the global model, the computation of the code length terms associated with δij and
rj, as well as the encoding over the circle of intersection (between spheres) can be performed
in O(1) (constant) time. Over all aligned coordinates, the time complexity to estimate the
message length over the global model takes O(N) time, as the number of matches are bounded
by N . This is the same for the local encoding, as each aligned ~tj ∈ T requires the computation
of the re-weighted probabilities (w′k’s) that take a constant O(|M|) effort (since the number of
components in the two mixtures is a constant). The encoding of unaligned coordinates of T
(encoded using the null model) has linear O(|T |) complexity. Since |T | ≥ N , the estimation of
I(T |S,A) given the coordinates of S and T and any alignment between them, A, has linear,
O(|T |), time complexity.

98 CHAPTER 5. I-VALUE: A MEASURE OF ALIGNMENT QUALITY

5.3 Results and Discussion

The previous section introduced new encoding models for alignments and coordinate data. The
new encoding schemes for alignments and the null model have been described and evaluated
above in Sections 5.2.1 and 5.2.2 respectively. The compression performance between the
improved models as part of I-value, and the old models described previously in Section 4.6 is
evaluated below.

Chapter 4 compared the performance of the information measure, using the old encod-
ing schemes (see Section 4.8) against the following nine popular scoring functions: DALI

z-score (Holm and Sander, 1993), TM-Score (Zhang and Skolnick, 2004), MI and SI (Kolodny
et al., 2005), STRUCTAL score (Subbiah et al., 1993; Gerstein and Levitt, 1998; Levitt and Ger-
stein, 1998), GDT TS and LGA S3 (Zemla, 2003), SAS (Subbiah et al., 1993), and GSAS (Kolodny
et al., 2005). These scores were computed using a large data set of alignments produced by
the popular structural alignment methods DALI (Holm and Sander, 1993), TM-Align (Zhang
and Skolnick, 2005b), LGA (Zemla, 2003), CE (Shindyalov and Bourne, 1998), and FatCat (Ye
and Godzik, 2003). The results in this chapter are computed on the same data set. The old
encoding models are compared with the improved ones using the vMF mixture model and the
Kent mixture model.

The data used in these results are the same as those used in the evaluation of encoding
models in Section 4.8 (see Section 4.8.1). The procedure for extracting these domain pairs
is outlined in Appendix A. Further, a table of the specific domains used is also given in
Appendix A.

Each of the alignment programs listed above was used to produce a set of approximately
2500 alignments each. Each alignment is then evaluated by the old information measure from
Chapter 4, and compared against I-value in two different configurations: I-value using the vMF
mixture model from Kasarapu and Allison (2015) and the encoding schemes as described in this
chapter; and I-value using the Kent mixture model from Kasarapu (2015) and the encoding
schemes as described in this chapter.

The results of this comparison are shown in Figure 5.10, which shows notched box-whisker
plots for these comparisons over alignments produced by the various structural alignment pro-
grams. Figure 5.10(a) compares the message length using the old encoding schemes from
Chapter 4 against the encoding schemes from this chapter, as defined in Section 5.2 using
the 35-component vMF mixture. Figure 5.10(b) makes the same comparison using the 23-
component Kent mixture model. The plots show the difference in total message lengths (see
Equation 4.5) between the combinations of encoding schemes used. A negative value means
that the improved encoding scheme has performed better by encoding a shorter total two-part
message, and vice versa for positive values.

The first thing to note regarding the results in Figure 5.10 is that the new encoding schemes
significantly decrease the two-part message length, I(A, 〈S, T 〉), across all alignment programs,
as the median reduction in total two-part message length is at least 100 bits. Therefore, the
new encoding models have succeed in more efficiently estimating the message length terms from
Equation 4.5. Note however, that approximately 25% of alignments generate a total message
length that is longer when using the new encoding methods. These alignments are between
domains that are unrelated: Class and Decoy. In these cases the message length can be much
greater, and also often longer than the null model message length.

Specifically, the median reduction of total message length using the vMF mixture model
ranges from −119.9 bits for LGA alignments, up to −225.8 bits for TM-Align alignments. Except
for DALI and LGA alignments, all achieved a reduction in total message length for at least

5.3. RESULTS AND DISCUSSION 99

DALI TM-Align FatCat LGA CE

Alignments generated by various programs

-2000

0

2000

n
e
w

 (
v
M

F
 m

ix
tu

re
)

-
o

ld
Improvement (-ve is better) to total two part message length

(new/vMF mixture vs old)

(a)

DALI TM-Align FatCat LGA CE

Alignments generated by various programs

-2000

0

2000

n
e
w

 (
K

e
n

t
m

ix
tu

re
)

-
o

ld

Improvement (-ve is better) to total two part message length

(new/Kent mixture vs old)

(b)

Figure 5.10: A comparison of message length estimates of the total two-part message lengths
between the old encoding schemes and the improved versions using either (a) the mixture of
vMF distributions, or (b) the mixture of Kent distributions. The y-axis shows the difference in
total message length: negative values mean the improved encoding models produce a shorter
(better) total message length; positive values mean the old encoding models produce a shorter
message length.

100 CHAPTER 5. I-VALUE: A MEASURE OF ALIGNMENT QUALITY

75% of the alignments generated. The difference is even greater when examining the total
message length reduction using the Kent mixture model. The reduction now ranges from
−170.9 bits for LGA alignments up to −322.9 bits for TM-Align alignments. This is a significant
improvement over both: the old models for encoding, and the vMF mixture using the new
models for encoding.

There are two important points to take from this experiment. Firstly, theR-model encoding
in Section 4.6 can easily gain compression over the uniform null model defined in Section 4.5.
In the worst case the old coordinate compression model is equal to the old null model encoding.
This suggests that the uniform null model is too näıve a representation of protein directional
data and the null directional models proposed by Kasarapu and Allison (2015) and Kasarapu
(2015) are far better models of protein directional data. Secondly, the improved, R-model using
the mixture of Kent distributions is able to achieve greater compression over the null model
than when using the mixture of vMF distributions, at the same time more heavily penalising
poor correspondences. This is a desirable property because the more efficient the encoding
schemes allows for a more accurate bound on the true information content.

5.4 Conclusions

At its core, the structural alignment problem depends on the trade-off between two conflicting
objectives: maximising the coverage, and maximising the fidelity of fit (Irving et al., 2001).
A method to objectively resolve this tension was proposed in Chapter 4 which outlined a
framework for assessing structural alignment quality, an information measure (see Equation 4.5)
based on MML. Chapter 4 also set out a number encoding mechanisms to estimate the code
length for the three terms in Equation 4.5: I(A), I(S), and I(T |S,A).

This chapter develops the ideas presented in Chapter 4 further by proposing and evaluating
improved methods for estimating the code lengths for these terms. This includes an evolution
of the best encoding methods discussed in Chapter 4. Those old encoding methods were näıve
but useful in paving the way for the development of more sophisticated methods in this chapter.
The main contributions of this chapter are the improved null and compression model encoding
schemes based on inferred mixtures of vMF and Kent distributions from representative empirical
protein data based on work by Kasarapu and Allison (2015). An improvement was also made
to the code length estimate for I(A) in the case where the alignment contains long terminal
gaps. The improved encoding scheme for I(A) introduced in this chapter is a modification to
the adaptive first-order Markov scheme (see Section 4.4). It retains all of the advantages on
this old scheme while solving a problem that arises when dealing with long terminal gaps which
bias the alignment state transition probabilities.

These improvements are benchmarked against the set of 2500 SCOPe (Fox et al., 2013)
domain pairs. The same domain pairs as used in Chapter 4 for benchmarking. From these
domain pairs, a set of popular alignment programs were used to produce 12, 500 alignments.
The results from this benchmarking show that the mixture of Kent distributions is more efficient
as part of the improved null model and R-model encoding and is therefore used by all later
references in this thesis to the I-value and it’s Inull(.) and I(T |S,A) terms. Furthermore,
this chapter demonstrated that the improved models for encoding are the more efficient and
discriminative when discerning between closely competing alignments. In these cases also,
the mixture of Kent distributions produces the shortest code lengths. Therefore I-value is
implemented using the Kent mixture based improved encoding models for the
remainder of this thesis.

5.4. CONCLUSIONS 101

This chapter provides a solid foundation upon which to build an alignment search algorithm.
Various approaches to the search problem are explored in the next chapter, culminating in an
alignment program called MMLigner.

102 CHAPTER 5. I-VALUE: A MEASURE OF ALIGNMENT QUALITY

Chapter 6

MMLigner: Searching for Pairwise
Protein Structural Alignments

“Don’t ask for guarantees. And don’t look to be saved in any one thing”

— Ray Bradbury, Fahrenheit 451

This chapter deals with methods to search for meaningful structural alignments using the
information measure of alignment quality, I-value, formulated in Chapter 4 and improved
upon in Chapter 5. It culminates in the development of a search program, MMLigner, that
identifes high quality and statistically significant structural alignments using the I-value
quality measure. The program is free-software and available for download at http://

lcb.infotech.monash.edu.au/mmligner. The consistency of MMLigner is demonstrated
by benchmarking its alignment results against state-of-the-art alignment programs. The
results produced by MMLigner are highly competitive, and often able to identify align-
ments where than current programs do not. Importantly, MMLigner is able to consistently
identify a range of significant alernative structural alignments, avoids pairing up spurious
correspondences, and prefers simple alignments over complex ones. Furthermore, struc-
tural alignments generated by MMLigner are considered at least competitive according to
popular measures of structural alignment quality and often succeeds where other alignment
programs do not identify any alternative alignments.

This chapter is based on the paper: Collier, J. H., Allison, L., Lesk, A. M., Stuckey,
P. J., Garcia de la Banda, M., Konagurthu, A. S. (2016). Statistical Inference of Protein
Structural Alignments, In communication. Preprint available at URL: http://biorxiv.
org/content/early/2016/06/02/056598

103

104 CHAPTER 6. SEARCHING FOR PAIRWISE STRUCTURAL ALIGNMENTS

6.1 Introduction

The pairwise protein structural alignment problem (see Section 2.2) involves the assignment
of ordered one-to-one correspondences between a subset of residues of two protein struc-

tures based on the their coordinate information. Solving this alignment problem involves three
major considerations:

Representation: Protein structural data are represented internally by alignment programs
in multiple ways. A common representation of a protein is as an ordered set of its Cα

coordinates. As seen in earlier chapters, the I-value measure was defined using this
representation as it is more suitable for accurate atomic coordinate representation and
superposition. Other representations of protein structures were discussed previously in
Section 2.2.4.

Objective function: The structural alignment problem can be seen as a combinatorial opti-
misation problem, where an objective function needs to be defined to evaluate the fitness
of any possible alignment. This chapter uses the I-value definition presented previously in
Chapter 5 as the objective function. Recall that I-value measures the explanatory power
(in bits) of any alignment to describe the Cα coordinate data of the proteins being aligned.
Several other state-of-the-art objective functions have been discussed in Sections 2.2.5 and
4.2.

Search method: Given an objective function, the goal of an alignment program is to find
the best alignment(s) under the stated measure of fitness that the objective function
defines. Using I-value, this chapter will develop an effective search procedure that explores
the alignment search space and attempts to identify alignment(s) that minimise I-value.
Developing and evaluating this search algorithm forms the main focus of this chapter.

The chapter begins with a general review of common search algorithms used by popular
structural alignment programs. This is followed by a description of some of the promising
early directions this research took in attempting to find a reliable search method that optimises
I-value. The chapter then presents an effective heuristic search method that supports the
implementation of a pairwise structural alignment program called MMLigner. Finally, the per-
formance of MMLigner is benchmarked against a host of popular protein structural alignment
programs.

6.2 Structural Alignment Search Methods

The structural alignment problem is an inherently difficult computational problem (Wang and
Jiang, 1994; Hasegawa and Holm, 2009). Even with the most straightforward characterisation
of protein structures as contact maps (see Section 2.2.4), this problem can be reduced to the
subgraph isomorphism problem (Grindley et al., 1993; Raymond and Willett, 2002; Krissinel
and Henrick, 2004), a well-studied intractable (NP-hard) problem from graph theory (Garey and
Johnson, 1979). This is to say, there is no known complete algorithm that can deterministically
find an optimal solution in polynomial time, using most formulations of objective functions for
this problem.* Therefore, heuristic search strategies are commonly employed to produce near
optimal alignments in a reasonable amount of time.

*Under certain circumstances an objective function can be approximated, in a way that makes polynomial
time capable of optimising for the approximation (Kolodny and Linial, 2004).

6.2. STRUCTURAL ALIGNMENT SEARCH METHODS 105

This section will provide a brief review of common search techniques used by popular struc-
tural alignment programs. For more thorough discussion, readers are pointed to the following
works : Knuth (1999a); Eidhammer et al. (2000); Vesterstrøm (2006); Russell and Norvig
(2009a); and Ma and Wang (2014).

6.2.1 Assembly of Well-Fitting Fragment-Pairs

Fragment-pair assembly is a widely used method to find structural alignments and it is among
the most effective ones. To describe this method of finding structural alignments, consider
the following definitions. A fragment of a protein is any contiguous region within the protein
chain. That is, if a protein structure S contains the following ordered set of Cα atomic co-
ordinates {~s1, ~s2, · · · , ~sn}, Then a fragment defines the regions of coordinates Si...j,∀1≤i<j≤n =
{~si, ~si+1, · · · , ~sj}, of length j − i+ 1. A fragment-pair refers to two fragments of equal lengths,
one from each of the two proteins, S and T , being aligned. Thus, a fragment-pair identifies two
fragments of the form 〈Si1...j1 , Ti2...j2〉 such that j1 − i1 = j2 − i2. A well-fitting fragment-pair
implies that the two fragments are superposable within a specified threshold of RMSD; that is,
RMSD(Si1...j1 , Ti2...j2) ≤ specified threshold.

To find a structural alignment between two protein structures S and T , the fragment-
pair assembly method first requires the construction of a library of well-fitting fragment-pairs
associated with those two structures.� This library is exhaustively constructed by iterating
over both structures and superimposing all possible fragment-pairs of a nominated length, L,
checking if they fit within the specified threshold of RMSD. Each superposition of fragments
takes O(L) effort (see Section 2.2.3). Therefore, constructing such a library takes O(L · |S| · |T |)
effort. Since L is often a small number (< 10), and the sizes of the structures (|S| and |T |) are
< 500, this step can be computed in seconds on standard desktop computers.

Finally, an attempt is made to assemble this library of well-fitting fragment-pairs in such a
way that they jointly superimpose with each other consistently (that is, within some specified
RMSD threshold). However, exhaustively assembling fragment pairs has a combinatorial effect
on the computation time required for assembly. To overcome this bottleneck, a number of
dynamic programming-based heuristics (see Section 6.2.4) are used to construct an approxi-
mate assembly of fragment-pairs, while ensuring that the assembly does not violate ordering
constraints. Depending on the specific technique, this is sufficient to construct an approximate
alignment that is then subject to further refinements.

Using fragment pairs to construct an alignment has several advantages over dealing with
individual residue pairs. Firstly, there are often fewer consistent combinations of well-fitting
fragment pairs than individual residue pairs. Therefore, algorithms can quickly operate on the
library of fragment pairs to rapidly produce (approximate) alignments that are good start-
ing points for local search (see below). Also, fragment pairs contain the local context of the
structures being aligned, that context is largely invisible when only considering residue pairs.
Due to these advantages, this technique is used by several popular protein structure align-
ment programs such as WHATIF (Vriend and Sander, 1991), CE (Shindyalov and Bourne, 1998),
MaxSub (Siew et al., 2000), MAMMOTH (Ortiz et al., 2002), MUSTANG (Konagurthu et al., 2006)
and Fr-TM-Align (Pandit and Skolnick, 2008).

�Often all fragment-pairs in this library contain fragments with identical lengths. However, some methods
allow variable length fragment-pairs.

106 CHAPTER 6. SEARCHING FOR PAIRWISE STRUCTURAL ALIGNMENTS

6.2.2 Local Search Methods

Local search is a class of search heuristics commonly used in computer science for solving hard
combinatorial optimisation problems. The search strategy involves exploring the candidate
solution space by applying local changes to the current (best) solution found. These local
changes are made iteratively until the search converges to a solution that cannot be improved
(or some maximum allowable number of changes to the solution is reached). Depending on
the strength of the objective function, local search heuristics can find good solutions to the
combinatorial problem, even if they are not guaranteed to be optimal. Some of the commonly
used local search techniques applied to the structural alignment problem are discussed below.

Hill Climbing Search

A commonly employed local search heuristic applied to the structural alignment problem is the
Hill climbing technique (Russell and Norvig, 2009b). Hill climbing is an iterative refinement
procedure that starts from an initial (or seed) alignment. The improvements are made by
applying a set of perturbation operations to the existing state of an alignment, and accepting
only the perturbation that most improves the alignment in terms of the objective function.
Since such heuristics always make a locally optimal choice, they are said to be greedy.

Note that hill climbing heuristics find optimal solutions only if the search space over the
candidate solutions (using the defined objective function) is convex. In practice, the search
space of most combinatorial problems (as with the structural alignment problem) is a complex
(‘rugged’) function. Therefore, hill climbing techniques often get trapped within a local optima,
making them very sensitive to the starting solution. One approach that is often used to over-
come this sensitivity is to run several searches from different starting points. A more reliable
way for hill climbing to avoid getting trapped in local optima is to use stochastic approaches
that rely on randomised acceptance of improved alignments (less greedy). This addition of
randomness is fundamental to the next two local search methods described below. However,
there are some programs that usefully apply a type of hill climbing approach to at least part
of their search algorithm. These include MINAREA (Falicov and Cohen, 1996), LOCK (Singh and
Brutlag, 1997), FASE (Vesterstrøm and Taylor, 2006), and SPalignNS (Brown et al., 2016).

Monte Carlo Search

Monte Carlo methods also rely on the iterative stochastic sampling of candidate solutions from
the search space. However, unlike the greedy hill climbing heuristics described above, the
acceptance criteria of the perturbed solutions in Monte Carlo methods is probabilistic. It is
this probabilistic acceptance that potentially prevents the solution from prematurely converging
to (certain kinds of) local optima, thus obtaining for a more extensive search of the solution
space.

Many Monte Carlo search methods are adaptations of the original Metropolis-Hastings al-
gorithm as applied to statistical mechanics (Metropolis et al., 1953; Hastings, 1970). Simulated
Annealing (Kirkpatrick et al., 1983) is a practical implementation of the Metropolis-Hastings
algorithm, and a general purpose stochastic optimisation technique used to find approximate
solutions with intractably large and complex problem solution spaces. This method is analo-
gous to the controlled cooling of solids to crystalline states (to minimise defects). The intuition
behind actual annealing is based on the observation that particles of matter are randomly
arranged at high temperatures (in gaseous and liquid states) and the gradual cooling to the

6.2. STRUCTURAL ALIGNMENT SEARCH METHODS 107

ground energy state allows those particles to arrange into a regular lattice structure. In con-
densed matter physics, the distribution of the random variable E associated with the kinetic
energy of particles at each value of temperature T is characterised by the Boltzmann distribution
of the form

Pr(E = E, T) ∝ exp

(
− E

κBT

)
where exp

(
− E
κBT

)
is the Boltzmann factor. This distribution has the effect of concentrating

the probability on lower kinetic energy states as the temperature decreases. In the limit as
T → 0, only the lowest energy states become probable (van Laarhoven and Aarts, 1987).

In order to simulate this annealing process for combinatorial optimisation problems, specifi-
cally the alignment problem, each alignment A is treated to be analogous to some configuration
of particles. The evaluation of that alignment using a given objective function, denoted by
Q(A), can be seen as analogous to the energy state E of the random variable in the Boltzmann
distribution, and a control parameter c mimics the temperature parameter κBT .

Thus, the simulated annealing algorithm is run iteratively, like the original Metropolis-
Hastings algorithm, starting with a high value of the control parameter c. Each alignment Ai
is perturbed to choose another alignment Aj in its neighbourhood. If Q(Ai) is the evaluation
of the objective function Q for the alignment Ai (similarly, for Q(Aj)), let the Metropolis
criterion be defined as ∆Qij = Q(Aj) − Q(Ai). Then, if ∆Qij ≤ 0, the perturbed alignment
is accepted with a probability of 1. On the other hand, when ∆Qij > 0, the odds ratio of the
Boltzmann-like distribution gives the probability of accepting the perturbed alignment Aj with
the current state of the alignment Ai:

Pr(Ai
perturbed−−−−−→ Aj, c) =

Pr(Q(Ai), c)
Pr(Q(Aj), c)

= exp−
(

∆Qij

c

)
This process of perturbing Ai

perturbed−−−−−→ Aj is iterated, holding the control parameter c fixed,
until the state of the alignment approaches the mode of the Boltzmann-like distribution. The
control parameter is then gradually lowered (for example, c (lowered) = 0.88c) until c ap-
proaches a small value (van Laarhoven and Aarts, 1987).

In general the simulated annealing algorithm for optimising an alignment, A, using an
alignment quality scoring function, Q, follows the steps set out in Algorithm 1 below.

Algorithm 1: Simulated Annealing

input : A seed alignment A and a starting temperature, c.
output: An alignment optimised for the quality measure, Q.

1 Ai ← A
2 while c > small value do
3 while some number of iterations do
4 Aj ← perturb(Ai)
5 if Q(Aj) ≤ Q(Ai) then
6 Ai ← Aj
7 else if accept with probability: Pr(Ai

perturbed−−−−−→ Aj, c) then
8 Ai ← Aj
9 c← lower(c)

10 return Ai

108 CHAPTER 6. SEARCHING FOR PAIRWISE STRUCTURAL ALIGNMENTS

The COMPARER (Sali and Blundell, 1990), DALI (Holm and Sander, 1993), and CE (Shindyalov
and Bourne, 1998) programs are some example of popular structural alignment programs that
use Monte Carlo methods to generate protein structural alignments.

Population Based Search

population based search methods are a class of general purpose stochastic optimisation tech-
niques which maintain a population of solutions at each iteration (instead of just one, as seen
in the search methods described above). Of the commonly used population based heuristics
used for the structural alignment problem, the Genetic algorithm (Fraser, 1957; Mitchell, 1996)
is arguably most popular. This search technique is inspired by the Darwinian theory of natural
selection, and borrows terms such crossover, mutation and fitness from it (Darwin, 1859).

Broadly, starting from a population of candidate solutions, this search method involves
selecting better solutions judged by a fitness (objective) function Q. The selected solutions
undergo a crossover step to combine the best parts of the better solutions in the population.
This is followed by a mutation step which could involve similar perturbation operations to those
used for simulated annealing. After the selection, crossover and mutation steps, the existing
population of solutions is updated into a new population and the process is repeated until a
set of conditions are met.

The success of genetic algorithms depends on many factors, including the ability of the
perturbation operations to sample from the local solution space and generate better solutions.
This requires the definition of perturbation operations that are flexible and computationally
efficient. The structural alignment programs KENOBI (Szustakowski and Weng, 2000), K2 (Szus-
takowski and Weng, 2003) and GANGSTA (Kolbeck et al., 2006) employ a genetic algorithm using
their own alignment quality measures as the fitness function.

6.2.3 Search by Alternating Superposition and Alignment

This approach to find structural alignments is inspired by the Expectation Maximisation (EM)
technique (Dempster et al., 1977). EM is well established in statistical learning where it is often
used to optimise the parameters of a statistical model relying on hidden variables (Dempster
et al., 1977).

Let D be some data and Θ be some (vector of) parameter(s) being estimated based on a

statistical model with hidden variables, ~H. There are many classes of problems that require an
estimated Θ and ~H that optimise the given statistical model (often as a maximum-likelihood
estimate or maximum a posteriori estimate; see Section 3.3). This is near impossible with both

Θ and ~H being unknown. To overcome this, the EM approach uses the following iterative
strategy. Starting with some initial guess (or arbitrary choice) of parameters Θ0, and holding

these parameters fixed, the method estimates the hidden variables ~H1. This is called the
Expectation step (or E-step). Then, holding the estimated hidden variable ~H1 fixed, the method
re-estimates the parameters Θ1. This step is called the Maximisation step (or M-step). These
Expectation and Maximisation steps are iterated as follows:

Θ0
E-step−−−→ ~H1

M-step−−−−→ Θ1
E-step−−−→ ~H2

M-step−−−−→ Θ2 · · ·Θi
E-step−−−→ ~Hi+1

M-step−−−−→ · · ·

until either Θi ≡ Θi+1, or the maximum limit of iterations has been reached.
For the structural alignment problem, the Cα coordinates of the structural pair 〈S, T 〉 are

analogous to the data, D, in the general EM approach, while the parameters of superposition
(rotation matrix, translation vector, and RMSD, associated with the optimal alignment A)

6.2. STRUCTURAL ALIGNMENT SEARCH METHODS 109

are analogous to Θ, and the hidden variables associated with that alignment A are analogous
to ~H. Therefore, applying the EM approach to this problem involves starting with an initial
seed alignment from which the superposition parameters (Θ0) are computed. Based on the
all-versus-all Cα-Cα distances after superposition, a new alignment is generated (giving the

updated hidden variables ~H1 associated with this alignment). From this stage, the process
of generating superposition parameters (Θi) and, through that superposition, new alignment

parameters (~Hi+1) is iterated until convergence.
Clearly, this approach of alternating between superposition and alignment is sensitive to the

initial seed alignment. To overcome this issue either a reliable starting alignment is needed or the
method has to be run with multiple distinct seeds to produce more reliable results (Eidhammer
et al., 2004). Examples of protein structure alignment programs using this technique include
SAL (Kihara and Skolnick, 2003), FRAGALIGN (Akutsu, 1996) and YASCA (May, 1996).

6.2.4 Dynamic Programming Based Methods for Structural Align-
ment

Dynamic Programming (Bellman, 1952) is an important class of algorithmic problem solving
techniques which are extremely useful for addressing combinatorial optimisation problems that
allow for linear (or sequential) ordering constraints. In order to be applicable, this problem
solving technique requires the following two key properties to hold in the given optimisation
problem.

Bellman principle of optimality: The principle relies on the ability of the given problem
to be partitioned into smaller subproblems. If the optima of the global problem can be
constructed from the optima of the smaller subproblems through a strictly additive func-
tion, then the problem exhibits the principle of optimality. That is, the problem possess
an optimal substructure such that solving the subproblems optimally and summing their
objective functions will result in the optimal evaluation of the global problem.

Overlapping Subproblems: If the global problem can be divided into subproblems, and
their subproblems overlap between various branches of the subdivisions, then the global
problem is set to have an overlapping substructure. This implies that each problem that
overlaps can be optimally solved exactly once, and its optimal solution stored (memoised)
in a history (or lookup) data structure. When a problem possesses both overlapping
subproblems, and an optimal substructure, the optimal solution can be solved efficiently
starting from a (lowest-order) subproblems that are trivially solvable, and building up to
the higher-order subproblems through the memoisation technique.

Intuitively, the dynamic programming method of solving an optimisation problem involves
breaking a large, complex problem into smaller and simpler component problems and storing
their solutions in such a way that they need only be computed once (Bellman, 1952, 1957;
Cormen et al., 2009). If the problem meets these required conditions, dynamic programming
is guaranteed to produce an optimal solution.

Dynamic programming has been extensively applied to the field of sequence alignment of
biomolecules, especially for protein sequences (Gusfield, 1997). An excellent overview of the
key contributions that led to the application of dynamic programming to sequence comparison
problems is given by Kruskal (1983). Needleman and Wunsch (1970) were amongst the first to
apply dynamic programming to compare protein sequences and their technique, summarised
below, is still very common for sequence and structure comparison.

110 CHAPTER 6. SEARCHING FOR PAIRWISE STRUCTURAL ALIGNMENTS

Let ℵ represent the alphabet of amino acids, and S = (s1, s2, s3, · · ·) and T = (t1, t2, t3, · · ·)
denote the ordered set of amino acid symbols (or sequences) along the chain of the two proteins.
An objective function for a sequence alignment is defined using:

a scoring matrix M : ℵ × ℵ → R. This scores all match states in the (sequence) alignment,
and is defined as a matrix of substitution scores associated with every pair of amino acid
symbols in the alphabet.

a general subadditive� gap penalty function Γ : Z→ R. This function takes an integer
argument corresponding to the length, l, of a run of insert or delete states in the alignment,
and returns a real number signifying the penalty for those gap states.

Using this objective function, Needleman and Wunsch (1970) proposed a general-purpose dy-
namic programming recurrence relation of the form:

DP (0, 0):=0
DP (i, 0):=Γ(i) ∀1 ≤ i ≤ |S|
DP (0, j):=Γ(j) ∀1 ≤ j ≤ |T |

DP (i, j):=max


DP (i− 1, j − 1) +M(si, tj)
max
1≤l≤i

{DP (i− l, j) + Γ(l)

max
1≤l≤j

{DP (i, j − l) + Γ(l)
∀1 ≤ i ≤ |S|,∀1 ≤ j ≤ |T |

(6.1)

where DP is a history (memoisation) matrix of size |S|+1×|T |+1 such that each cell, DP (i, j),
in the history matrix stores the optimal score of the subproblem associated with an alignment
of the prefixes of two sequences, (s1, s2, s3, · · · , si) with (t1, t2, t3, · · · , tj).

The above dynamic programming recurrence is defined using a general subadditive gap
penalty function. As it is defined, the time complexity for solving this recurrence is O(|S||T |2 +
|S|2|T |), that is, it requires a cubic computational effort, O(N3), where |S| = |T | = N . How-
ever, when the general subaddtive gap penalty function, Γ, takes a special form, the dynamic
programming recurrence can be further simplified. For instance when Γ is a linear function of
the gap length of the form Γ(l) = δl, where δ is a constant, Needleman and Wunsch (1970) sim-
plified the above recurrence into a form that takes only quadratic, O(N2), computational effort.
Similarly, Gotoh (1982) proposed yet another O(N3) time dynamic programming recurrence
using an affine-linear gap penalty function of the form Γ(l) = δ1l + δ2, where δ1, δ2 are con-
stants, although the recurrence involved three (rather than one) history matrices (Eidhammer
et al., 2004).

There have been several attempts to extend the dynamic programming apparatus of se-
quence alignment to structural alignments, to be used as fast heuristics rather than as com-
plete optimal techniques. One approach has been to transform the 3D structural alignment
problem into a one-dimensional characterisation, where the symbols in such characterisations
encode the structural and physico-chemical information of successive amino acid residues within
a specified window (Levine et al., 1984; Karpen et al., 1989; Friedberg et al., 2007). Although
very fast to run, such one-dimensional characterisations of three dimensional structures do not
yield accurate results (Kolodny et al., 2005; Hasegawa and Holm, 2009). They are particularly
vulnerable when the structures being compared contain elements of secondary structures that
are deleted with respect to each other, or even when there is a major difference in the lengths
of secondary structural elements (Konagurthu et al., 2006).

�A function f : R→ R is subadditive if ∀p, q ∈ R, f(p+ q) ≤ f(p) + f(q)

6.2. STRUCTURAL ALIGNMENT SEARCH METHODS 111

Another approach is to define, using a reasonable superposition of the two structures,§ an
all-versus-all Euclidean distance matrix between each possible Cα-Cα pair. This distance matrix
is converted into a scoring matrix (analogous to the substitution matrix in the sequence align-
ment case) and, using an ad hoc gap penalty function, the structures are aligned (iteratively
as in the aforementioned EM approach) using minor modifications to the standard form of the
dynamic programming recurrence. While all of these attempts are heuristics, they have shown
promise for generating seed alignments that can be later refined (Konagurthu et al., 2006).
Other programs that use dynamic programming in some form or other include DALI (Holm and
Sander, 1993) which performs dynamic programming over a distance matrix, STRUCTAL (Levitt
and Gerstein, 1998), SAL (Kihara and Skolnick, 2003) which uses standard Needleman Wunsch
dynamic programming to find structural alignments from specially constructed scoring ma-
trices, and TM-Align (Zhang and Skolnick, 2005b), which uses Needleman-Wunsch dynamic
programming over secondary structures to obtain a seed alignment which is improved upon
using other methods.

Double Dynamic Programming

Double dynamic programming is a dynamic programming algorithm that performs superposi-
tion and alignment simultaneously, rather than alternating as described above. This is achieved
by performing dynamic programming in duplicate when constructing an alignment: once at a
global level (using a high-level scoring matrix, HL), and once at the local level (using low-level
scoring matrices, ijLL), for every pair of residues. This is illustrated in Algorithm 2.

Let S = (s1, s2, s3, · · · , sm) and T = (t1, t2, t3, · · · , tn) denote the ordered set of amino acids
in the pair of structures, S and T . For each pair of residues, si and tj, a low-level scoring
matrix, ijLL, is constructed under the constraint that this pair forms part of the optimal path.
Under this constraint, a superposition (see Section 2.2.3) is calculated, then the alignment
objective function is used to fill-in the scoring matrix. Note that, a superposition of a single
residue pair does not orient S with respect to T . One way of establishing an orientation
is to define a unique reference coordinate system using the residues around si and tj. For
example, the triplets {si−1, si, si+1} and {tj−1, tj, tj+1} can be superimposed in order to orient
S with T . Then, depending on the objective function being optimised, (si, tj) can be forced
into the optimal path within ijLL by either setting the score in ijLLij to be so high that the
optimal path must pass through it, or by computing the optimal path first through ijLLkl,
(1 ≤ k ≤ i, 1 ≤ l ≤ j), then again through ijLLkl, (i ≤ k ≤ m, j ≤ l ≤ n) and joining the
paths.

The high level scoring matrix, HL, is constructed by accumulating (normalised) scores from
all of the low-level scoring matrices. This reinforces higher scoring alignment paths through
HL and eliminates lower scoring paths. Finally, a Needleman-Wunsch dynamic program is
run, using HL as the scoring matrix, to find the optimal path. The time complexity of this
double dynamic programming approach is quadratic in the size of the structures being aligned.
Assuming that |S| ≤ |T | and N = |T |, each low-level matrix can be computed in O(N2) time.
Since the are N2 low-level matrices that go into building the high-level matrix, construction
of HL requires O(N4) time. Finally, dynamic programming on HL requires O(N2) time.
Therefore, double dynamic programming requires O(N4) time to find an alignment.

Double dynamic programming was used by the landmark SSAP (Taylor and Orengo, 1989;
Orengo and Taylor, 1996) protein structure alignment program, which is also used as the
automatic basis for classification by the CATH domain classification database (see Section 2.1.4;

§This can be computed from an initial seed alignment, as seen in the local search methods.

112 CHAPTER 6. SEARCHING FOR PAIRWISE STRUCTURAL ALIGNMENTS

Algorithm 2: Double Dynamic Programming

input : A pair of protein structures: S and T
output: An alignment

1 HL[]← [0]|S|×|T |
2 for i← 1 to ‖S‖ do
3 for j ← 1 to ‖T‖ do
4

ijLL[]← create low level(i, j)
5 HL[]← HL[] + normalise(ijLL)

6 return run dynamic program(HL[])/* Return the optimal path through HL */

Orengo et al. (1997)). The SAP (Taylor, 2000) algorithm applies double dynamic programming
several times in an iterative manner.

6.3 Searching for Structural Alignments Using I-value

This section presents a structural alignment program, MMLigner, that uses the MML based
I-value measure developed in Chapter 4 and improved in Chapter 5. MMLigner implements an
efficient search heuristic that initially finds a reliable set of seed alignments for a given pair of
protein structures using methods similar to those described in Section 6.2.1 earlier. These seed
alignments are then refined over an EM-like approach (see Section 6.2.3). In this section, the
alignment search heuristic will be referred to as the ‘MMLigner algorithm’.

The full details of the design principles behind the MMLigner algorithm are described in
Section 6.3.2. However, before settling upon the MMLigner algorithm as the method of choice
to search for structural alignments using I-value measure, many different approaches were
trialled during the long gestation of this thesis. The most promising of these is a heuristic
based on dynamic programming, and discussed below in Section 6.3.1. Although this search
method lacks the computational efficiency and consistency that was finally achieved using
the MMLigner algorithm, the dynamic programming heuristic is nevertheless noteworthy for
potentially facilitating a visual description of the optimal alignment solution space (see below
and Chapter 8). Thus its inclusion in this thesis.

6.3.1 Dynamic Programming Using the I-value Measure

Recall that (from Equation 5.1), for a pair of protein structures 〈S, T 〉, defined as ordered sets
of Cα coordinates S = {~s1, ~s2, ~s3, · · · } and T = {~t1,~t2,~t3, · · · }, and any alignment A between
them, the I-value measure of alignment quality is defined as:

I(A, 〈S, T 〉)︸ ︷︷ ︸
I-value

= I(A)︸ ︷︷ ︸
First part

+ Inull(S) + I(T |S,A)︸ ︷︷ ︸
Second part

bits.

As seen earlier (see Section 4.4), any (order-preserving) alignment A between the two struc-
tures can be represented as a three-state string over the match, insert, and delete alignment
states. Thus, any prefix¶ of that alignment string describes the alignment relationship between
the Cα coordinates: S1...i = (~s1, ~s2, · · · , ~si) with T1...j = (~t1,~t2, · · · ,~tj). Let Ai,j represent the
alignment prefix that suggests an alignment between the Cα coordinates 〈S1...i, T1...j〉 and let

¶Given a string s[1 · · ·n], the prefix of the string is given by s[1 · · · i],∀1 ≤ i ≤ n.

6.3. SEARCHING FOR STRUCTURAL ALIGNMENTS USING I-VALUE 113

I-value(i, j) give the I-value for describing the structural coordinates 〈S1...i, T1...j〉 using the
alignment Ai,j:

I-value(i, j) = I(Ai,j, 〈S1...i, T1...j〉) = I(Ai,j) + Inull(S1...i) + I(T1...j|S1...i,Ai,j) bits.

Using these notations, a dynamic programming heuristic is defined using I-value as the
objective function. What is referred to as optimal is any value that is optimal according to
the heuristic, however, since the method is a heuristic, the value stored cannot be guaranteed
to be optimal. This approach is similar in spirit to the algorithm used for pairwise protein
sequence alignment in Equation 6.1, due to Gotoh (1982), using affine-linear gap penalty
function mentioned previously (see Section 6.2.4).

The method proceeds as follows. Let DPmatch, DPdelete, and DPinsert represent three dy-
namic programming history matrices, each of size |S|+ 1× |T |+ 1. Let any cell DPmatch(i, j),
store the optimal (or shortest) I-value(i, j) for the coordinates 〈S1...i, T1...j〉, such that the op-
timal alignment Amatch

i,j ends in a match state. (In other words, the pair of Cα coordinates ~si
and ~tj are aligned in that optimal alignment Amatch

i,j). Similarly, the cells DPdelete(i, j) and
DPinsert(i, j) store the optimal (or shortest) I-value(i, j) such that their optimal alignments
Adelete
i,j and Ainsert

i,j end in delete or insert states respectively, where either ~si or ~tj are unaligned
in the optimal alignments corresponding to those cells.

Based on this, a heuristic dynamic programming recurrence is defined, where the cells within
the three history matrices, {DPmatch, DPdelete, DPinsert}, storing I-values for the subproblems
(that is, the alignment of 〈S1...i, T1...j〉), can be updated from the neighboring subproblems
(involving (i− 1, j − 1)-cells, (i− 1, j)-cells and (i, j − 1)-cells). For instance, the value stored
at the cell DPmatch(i, j), where the alignment Amatch

i,j ends in a match state, can be derived
from the alignment solution associated with one of the following cells: DPmatch(i − 1, j − 1),
DPdelete(i− 1, j − 1), or DPinsert(i− 1, j − 1).

Let ∆Im→ m represent the update to the I-value term required for expanding the alignment
Amatchi−1,j−1 (associated with DPmatch(i − 1, j − 1)) by a further match state. This new align-
ment Amatch

i,j is associated with the cell DPmatch(i, j). Therefore, the term ∆Im→ m involves the
following updates:

Update to I(S): The coordinate ~si ∈ S is stated using the null model (see Section 4.5) taking
Inull(~si) bits.

Update to I(T |S,A): The coordinate ~tj ∈ T is stated using the coordinate compression model
encoding (see Section 4.6) using the information from ~si taking Ialigned(~tj|~si) bits.

Update to I(A): I(Amatch
i,j) (see Section 4.4) can be updated from I(Amatch

i−1,j−1) by:

� removing the code length term accounting for its length, Iinteger(|Amatch
i−1,j−1|)

� adding the code length term accounting for the length increase, Iinteger(|Amatch
i−1,j−1|+1)

� adding the code length to state the m→ m alignment state transition, − log2(Pr(mm))

The general set of recurrences relationships driving this dynamic programming heuristic and
the update terms are listed below:

DPmatch(i, j) = min


DPmatch(i− 1, j − 1) + ∆Im→m

DPinsert(i− 1, j − 1) + ∆Ii→m

DPdelete(i− 1, j − 1) + ∆Id→m

where

114 CHAPTER 6. SEARCHING FOR PAIRWISE STRUCTURAL ALIGNMENTS

∆Im→m = Inull(~si) + Ialigned(~tj|~si)− log2(Pr(mm))− Iinteger(|Amatch
i−1,j−1|) + Iinteger(|Amatch

i−1,j−1|+ 1)

∆Ii→m = Inull(~si) + Ialigned(~tj|~si)− log2(Pr(im))− Iinteger(|Ainsert
i−1,j−1|) + Iinteger(|Ainsert

i−1,j−1|+ 1)

∆Id→m = Inull(~si) + Ialigned(~tj|~si)− log2(Pr(dm))− Iinteger(|Adelete
i−1,j−1|) + Iinteger(|Adelete

i−1,j−1|+ 1)

DPdelete(i, j) = min


DPmatch(i− 1, j) + ∆Im→d

DPinsert(i− 1, j) + ∆Ii→d

DPdelete(i− 1, j) + ∆Id→d

where
∆Im→d = Inull(~ti)− log2(Pr(md))− Iinteger(|Amatch

i,j−1 |) + Iinteger(|Amatch
i,j−1 |+ 1)

∆Ii→d = Inull(~ti)− log2(Pr(id))− Iinteger(|Ainsert
i,j−1 |) + Iinteger(|Ainsert

i,j−1 |+ 1)

∆Id→d = Inull(~ti)− log2(Pr(dd))− Iinteger(|Adelete
i,j−1 |) + Iinteger(|Adelete

i,j−1 |+ 1)

DPinsert(i, j) = min


DPmatch(i, j − 1) + ∆Im→i

DPinsert(i, j − 1) + ∆Ii→i

DPdelete(i, j − 1) + ∆Id→i

where
∆Im→i = Inull(~si)− log2(Pr(mi))− Iinteger(|Amatch

i−1,j |) + Iinteger(|Amatch
i−1,j |+ 1)

∆Ii→i = Inull(~si)− log2(Pr(ii))− Iinteger(|Ainsert
i−1,j |) + Iinteger(|Ainsert

i−1,j |+ 1)

∆Id→i = Inull(~si)− log2(Pr(di))− Iinteger(|Adelete
i−1,j |) + Iinteger(|Adelete

i−1,j |+ 1)

The above recurrence involves latent variables in terms of nine transition probabilities,
Pr(mm),Pr(im),Pr(dm), . . . and so on, that dictate the encoding of each state transition in the
alignment encoding. These terms can be inferred using an EM approach (see Section 6.2.3).
Starting with some initial values for these probabilities, the E-step involves running the above
dynamic program to find an alignment. The M-step involves updating the transition probabili-
ties derived from the resultant alignment and iterating the dynamic program until convergence.

The above set of recurrences do not guarantee finding the optimal alignment using the
I-value measure. This is because the I-value measure does not obey the Bellman principle of
optimality (Bellman, 1952): the global structural alignment problem cannot be broken down
into strictly additive subproblems (as being shown in the aforementioned recurrence relation-
ships). This is mainly due to the fact that the estimation of I(T |S,A) terms is not additive as
it relies on superposition and the superposition depends on the correspondences assigned by the
alignment (see Section 2.2.3). For various (i, j)-cells in the dynamic program, the superposition
changes depending on the alignments and, hence, the additivity breaks down.

Generating Landscapes of Structural Alignment Quality

Despite the above dynamic program being a heuristic, it often results in very good structural
alignments, particularly when the dynamic program is not distracted by early greedy choices
during the recurrence. This is useful, as it can be used to produce very interesting and insightful
visualisations of the structural alignment landscape. A landscape L, of alignment quality
between structures S and T can be defined by a matrix of order (|S|+ 1× |T |+ 1). Each cell

6.3. SEARCHING FOR STRUCTURAL ALIGNMENTS USING I-VALUE 115

L(i, j) of this matrix stores the I-value of the best alignment passing through (or involving) the
pair of coordinates ~si and ~tj.

To compute L(i, j), the method begins by computing the dynamic programming history
matrices {DPmatch, DPdelete, DPinsert}, as shown in the aforementioned recurrence. After this,
the same dynamic programming is carried out, but in the backwards direction by revers-
ing the order of coordinates in S and T . The resulting history matrices are denoted by
{bwdDPmatch, bwdDPdelete, bwdDPinsert}. Using these history matrices computed in both the
forward and reversed directions, L(i, j) can be computed as:

L(i, j) = min (DPmatch(i, j), DPinsert(i, j), DPdelete(i, j))

+ min (bwdDPmatch(i, j), bwdDPinsert(i, j), bwdDPdelete(i, j))

Plotting the matrix L leads to a visual appreciation of the optimal alignment landscape
using the I-value measure. An example of this landscape for the pair of protein structures,
Succinyl-CoA synthetase from Sus scrofa (wwPDB 1EUD-A; a two domain protein containing
305 residues) and Glutamate mutase from Clostridium cochlearium (wwPDB 1CCW-A; a single
domain protein containing 137 residues) is given in Figure 6.1. Notice that there are two “val-
leys” through which an alignment path is traced (in red and yellow). These paths correspond
to the two alternative domain alignments identified by the algorithm. The first is an align-
ment of the N-terminal domain from wwPDB 1EUD-A with wwPDB 1CCW-A. The second is the
alignment of the C-terminal domain of wwPDB 1EUD-A with wwPDB 1CCW-A. A more detailed
analysis of the alignments between this pair of structures is given later, in Section 6.3.2 and
Figure 6.2. More examples of these landscapes can be found in Section 8.1.4.

Figure 6.1: A visualisation of the landscape of competing alignment quality for the pair of
structures, 1EUD-A and 1CCW-A. The two best alternative alignments are highlighted in red and
yellow.

Summary

This section has described a dynamic programming based heuristic to search for structural
alignments using the I-value measure of alignment quality. The evaluations of the performance
of this heuristic shows it does not consistently generate high quality alignments.� The inconsis-
tencies arise, in many cases, due to premature greedy choices that are globally suboptimal and

�Results are not included because a completely new search method is proposed (see Section 6.3.2), which
supersedes this heuristic.

116 CHAPTER 6. SEARCHING FOR PAIRWISE STRUCTURAL ALIGNMENTS

distract the dynamic programming algorithm from finding a reasonable structural alignment.
However, when the algorithm does find a good structural alignment, it can be used to visualise
of the landscape of optimal alignments, from which alternative alignments can be interactively
explored. Since it is critical to have a consistent and reliable alignment search method, a
different search strategy was explored, and the resulting method is explained in Section 6.3.2
below.

6.3.2 The MMLigner Algorithm

This section describes the final version of the heuristic search procedure used by MMLigner to
identify statistically significant and biologically meaningful pairwise alignments using I-value
(see Chapter 5) as the objective function. An important advantage of the search method
detailed in this section is that it is able to explore alternative structural alignments for the
same pair of structures and report those that pass the null hypothesis test as described in
Section 4.3.

The MMLigner search method is carried out in two phases. The first phase, called seed-
ing, combines fast fragment assembly using sufficient statistics for superposition with dynamic
programming (see Section 6.2.1 and Section 7.2). The aim of this phase is to quickly and
deterministically generate alternative structural alignments by efficiently clustering consistent
assemblies of well-superposable fragment pairs for the two given structures S and T . The sec-
ond phase, called refinement, optimises these seed alignments using the I-value criterion with
an expectation maximisation optimisation algorithm (see Section 6.2). This search procedure
is illustrated by example using the pair of structures wwPDB 1EUD-A and wwPDB 1CCW-A

already used in the previous section. This pair of structures was earmarked as a difficult case
for structural alignment by Sippl and Wiederstein (2008), as they possesses two plausible al-
ternative structural alignments and, hence, they are useful in demonstrating the effectiveness
of the MMLigner search method for identifying and reporting alternative alignments.

Phase 1: Generating Alignment Seeds

This phase is intended to extract a set of good seed alignments. Briefly, phase one consists of
the following steps:

1. Find all equi-sized contiguous fragments from each structure that fit within an RMSD
threshold. This identifies locally fitting fragment pairs.

2. Filter the fragments found in step 1 by eliminating all fragment pairs that do not jointly
fit below an RMSD threshold. This eliminates locally fitting fragment pairs that are not
globally useful.

3. Cluster the remaining fragment pairs into groups that fit consistently.

4. For each cluster, build a scoring matrix based on the superimposed fragment distances
within the cluster. Then use dynamic programming to build a seed alignment from the
cluster.

The remainder of this section details each of the above steps.

Phase 1, Step 1: Identification of a library of maximal fragment pairs (MFPs).
Given a pair of structures S and T , the algorithm identifies all well-superposable, maximally-
extended fragment pairs that fit within a threshold of RMSD of 2 Å. A Maximal Fragment Pair

6.3. SEARCHING FOR STRUCTURAL ALIGNMENTS USING I-VALUE 117

(MFP) is the central unit of operation for phase 1 and it is defined as a contiguous well fitting
pair of fragments with at least 6 residues. An MFP can be considered as a contiguous diagonal
series of cells in a matrix with |S| rows and |T | columns. An MFP of length l, starting at Si
in S and starting at Tj in T , is represented by the diagonal starting at D̄ij and occupying the
diagonal for l cells. The results of this step, defined in Algorithm 3, is a library of MFPs for
the given pair of structures being aligned. This library can be visualised in matrix form as in
Figure 6.2(a).

Algorithm 3: Identify library of MFPs

input : A pair of protein structures: a reference structure, S, and a target structure, T
output: All maximally sized fragment pairs that fit within a threshold of RMSD

1 mfp library[]← []
2 for i← 1 to ‖S‖ − 6 do
3 for j ← 1 to ‖T‖ − 6 do
4 ss← superimpose(Si,i+6, Tj,j+6)
5 for l← 6 to min(‖S‖ − i, ‖T‖ − j) do
6 if not superseded(ss,mfp library[]) and rmsd(ss) < 2.0 then
7 mfp library[]← append(ss)
8 else
9 break

10 ss← update(Si+l+1, Tj+l+1)

11 return mfp library[]

Algorithm 3 systematically searches over S and T , growing every possible MFP from the
minimum size of 6 until the RMSD threshold is broken. This is performed rapidly by using
the addition update function for superposition sufficient statistics defined Section 7.2.4. An
MFP is not added to the library if it is superseded by an MFP already there. A superseding
MFP is one that contains all the same correspondences and more. If a valid MFP is superseded
by an MFP already in the library, it is not added. Note that superseding is distinct from
overlapping. Overlapping occurs when MFPs share some, but not all, of their residue-residue
correspondences.

This procedure results in a large search space as shown for example, in Figure 6.2(a), where
the blue highlighted areas represent MFPs found using this method for the pair of structures
wwPDB 1EUD-A and wwPDB 1CCW-A. The next step is used to reduce the library of MFPs by
eliminating globally poor fitting areas.

Phase 1, Step 2: Filtering the library of MFPs. The MFP library from step 2 is filtered
in this step to contain only MFPs that can be jointly superposed with at least two other MFPs
in the set. To begin, every pair of non-overlapping MFPs that can be jointly superposed
under the threshold of RMSD of 3Å is stored. Any MFP that does not superpose within this
threshold is discarded since it shows no evidence of being spatially consistent with any other
MFPs in the set. This eliminates MFPs that are locally but not globally meaningful. For each
pair of MFPs that jointly superpose within the RMSD threshold, the algorithm extends the
superposition further using yet another (non-overlapping) MFP. Thus, a superposition using a
triplet of MFPs is formed. Any triplet of MFPs that does not jointly superimpose below the
threshold of RMSD of 4Å is discarded. This further prunes the original library of MFPs (see
Figure 6.2(b)).

118 CHAPTER 6. SEARCHING FOR PAIRWISE STRUCTURAL ALIGNMENTS

1EUD-A
0 50 100 150 200 250 300

1
C

C
W

-A

0

20

40

60

80

100

120

140

Set of Maximal Fragment Pairs (MFPs) identified by MMLigner

1EUD-A

0 50 100 150 200 250 300

1
C

C
W

-A

0

20

40

60

80

100

120

140

Filtered set of MFPs

(a) (b)

1EUD-A
0 50 100 150 200 250 300

1
C

C
W

-A

0

20

40

60

80

100

120

140

Top two clusters from the filtered MFP set

1EUD-A
0 50 100 150 200 250 300

1
C

C
W

-A

0

20

40

60

80

100

120

140

Seed alignments generated using MFPs of each cluster

(c) (d)

1EUD-A
0 50 100 150 200 250 300

1
C

C
W

-A

0

20

40

60

80

100

120

140

Final alignments refined from seeds using I-value measure

(e) (f) (g)

Figure 6.2: Illustration of different steps used in MMLigner’s heuristic search using the example
of wwPDB 1EUD-A and wwPDB 1CCW-A. See Section 6.4.1 for more details about this structural
pair. (a) A 2D matrix showing the full library of maximal (well-superposable) fragment pairs
(MFPs) identified by MMLigner. Each pair is represented as a contiguous series of diagonal
blue dots. (b) Filtered set of MFPs were each listed MFP jointly superposes with two other
(non-overlapping) MFPs in the set. (c) Separation of the filtered set of MFPs into two clusters
of consistently fitting MFPs. (d) Determination of a tentative seed alignments for each cluster
shown as a source (bottom left) to sink (top right) path. (e) Refinement of the tentative seed
alignments using I-value measure. (f-g) Superposition of the two structures using the final
two alternate alignments found post refinement. Note, the first and second rows in Table 6.2
corresponds to the alignment paths shown in black and magenta in (e).

6.3. SEARCHING FOR STRUCTURAL ALIGNMENTS USING I-VALUE 119

If carried out näıvely, this filtering procedure can be computationally expensive. However,
by using sufficient statistics of superposition as described in Section 7.2, the filtering procedure
can exhaustively and very efficiently compute joint superpositions over all MFP pairs, and
their further extensions to MFP triples, by benefiting from the constant time update feature
from Section 7.2.4. To do this, when the original library of MFPs is computed, the sufficient
statistics of the superposition in each MFP is also stored. The sufficient statistics and, hence,
the RMSD of joint superposition of pairs of MFPs can be computed as a constant time update
using the sufficient statistics of individual MFPs. Similarly, extensions of pairs to triples can
also be updated in constant time. As a result, the identification of MFPs and the pruning can
be carried out exhaustively in the matter of a few seconds. Figure 6.2(b) shows the result of
filtering the set of MFPs from Figure 7.5(a).

Phase 1, Step 3: Clustering the filtered set of MFPs. The aim of this step is to
partition the filtered set of MFPs into groups (or clusters) of consistently fitting MFPs. A seed
alignment can then be generated within each cluster.

The clustering heuristic proceeds iteratively as in Algorithm 4. First, the filtered set of
MFPs is sorted in decreasing order of length (in terms of number of residue pairs in each MFP)
and the longest MFP in the filtered set is assigned as the initial singleton cluster. The iterative
process of clustering then starts by traversing the remaining sorted list of filtered MFPs, starting
from the longest. For each MFP in the list, the algorithm checks whether it can be added to
any of the already created clusters. If it can, it is added into that cluster. Otherwise, a new
cluster is created with this MFP as its singleton member. An MFP can be added to a cluster
if the MFP jointly superposes with at least 40% of the MFPs already assigned to that cluster.
This is repeated until all MFPs in the filtered list has been assigned to a cluster.

At the end of this procedure, there may be clusters that contain only a small number of
short MFPs, and/or a set of MFPs that largely overlap in a small section. Such clusters should
be discarded. To achieve that, if the combined, non-overlapping length of the MFPs in the
cluster is less than three** times the minimum MFP length, that is if the cluster defines less
than 18 consistent correspondences, the cluster is eliminated. Note that this is not applied
simply to clusters containing only a small number of MFPs since, for closely related structures,
an MFP can contain a large proportion of one or both structures and is thus meaningful in
defining an alignment.

The remaining clusters are used in the next steps to identify seed alignments. Figure 6.2(c)
shows the top two clusters of MFPs (based on the combined length of MFPs in them) for the
filtered set from Figure 6.2(b).

Phase 1, Step 4: Finding a seed alignment using the clustered MFPs. In this final
step for phase 1, the set of MFPs in each cluster are converted into a weight matrix, which is
used to construct a rough seed alignment using a dynamic programming technique. Dynamic
programming is introduced in Section 6.2.4 above.

A scoring matrix, D̄, with |S| rows and |T | columns is computed for each cluster. Every
MFP over 3 × MIN MFP LEN is assigned a simple (RMSD,Ne) type score based on the scoring
function from Ilyin et al. (2004) as in Equation 6.2.

V = 0.25 ·Ne · e−0.39·RMSD2

(6.2)

**Three due to the filtering step accepting a triplet of MFPs

120 CHAPTER 6. SEARCHING FOR PAIRWISE STRUCTURAL ALIGNMENTS

Algorithm 4: Clustering filtered MFPs

input : A filtered set of MFPs
output: A set of MFP clusters

1 MFP []← sort by length(MFP [])
2 clusters[]← []
3 for mfp in MFP [] do
4 for cluster in clusters[] do
5 if mfp superimpose with ≥ 40% of cluster ≤ THRESHOLD then
6 cluster ← add to cluster(cluster)
7 continue

8 if not member of cluster(mfp) or empty(clusters[]) then
9 clusters[]← append new cluster(mfp)

10 return clusters[]

Each cell occupied by these MFPs in D̄ are assigned the value V
3×MIN MFP LEN

. This process of
filling cells in the matrix is repeated for non-overlapping MFP pairs (and triples) by multiplying
the number of ways a MIN MFP LEN MFP can be tiled over the total extent of matches described
by the MFPs in the pair (or triple). This process reinforces closely matching residue pairs and
eliminates poorly matching residue pairs.

Once the scoring matrix D̄ has been constructed using the above process, an alignment is
produced using the constant gap-penalty dynamic programming technique described in Sec-
tion 6.2.4. The gap-penalty is set to zero to ensure that the generated alignment is constructed
purely based on the geometric scores from the clustered and filtered MFPs. The recurrence
relation is as follows:

M0,0 = 0

Mi,0 = M0,j = 0

Mi,j = max


Mi−1,j−1 + D̄i,j

Mi−1,j

Mi,j−1

(6.3)

This relation fills a memoisation matrix, M , from which the optimal path is extracted. This
procedure is repeated for every cluster identified step 3 to generate geometrically plausible seed
alignments as input to phase 2, which is described below. Figure 6.2(d) shows the alignment
paths found for the top two clusters identified in Figure 6.2(c).

Phase 2: Refinement of the Seed Alignment Using I-value Criterion

Phase 1 of the procedure produces geometrically plausible seed alignments that are optimised
in phase 2 through a series of small perturbations. Using each seed alignment as the starting
point, a series of perturbations are carried out to identify the final alignment that the MMLigner
search method reports. The fitness of each (perturbed) alignment is evaluated using the I-value
measure (see Chapter 5). In particular, the fitness is maximised as the amount of compression

6.3. SEARCHING FOR STRUCTURAL ALIGNMENTS USING I-VALUE 121

the perturbed alignment achieves over the null model message length:

compression(A, 〈S, T 〉) = Inull(〈S, T 〉)− I-value

= Inull(〈S, T 〉)− I(A, 〈S, T 〉)

The procedure is described by Algorithm 5 below. Broadly, the approach is similar to
the EM method introduced in Section 6.2.3. It treats alignments as a list of matched blocks
in the same way as the corresponding block alignment encoding method represented align-
ments in Section 4.4. The algorithm iterates over each match block in the alignment and
applies a series of primitive perturbation operations to it and to any leading and trailing
gaps. This is repeated, operating upon the current best alignment at each iteration, until
the method converges or reaches the maximum of 25 iterations. Note that the perturbation
functions: ExtendMatchBlock, ShrinkMatchBlock, SwapMatch, SlideMatchBlock, and
RealignClosest are defined below.

Algorithm 5: Heuristic Expectation-Maximisation search

input : An initial (seed) alignment, A, and a pair of structures, 〈S, T 〉
output: An I-value (locally) optimal alignment, A∗

1 nIters← 0
2 A∗ ←A
3 while nIters ≤ 25 do
4 best ival← compression(A,〈S, T 〉)
5 ptrbd[]← []
6 ptrbd ival[]← []
7 for i← 1 to ‖matched blocks‖ do
8 for n← 1 to 6 do
9 for perturbType in {ExtendMatchBlock, ShrinkMatchBlock, SwapMatch,

SlideMatchBlock} do
10 Atmp ← perturbType(i, n, left)
11 ptrbd ival[]← append(compression(Atmp,〈S, T 〉))
12 ptrbd[]← append(Atmp)
13 Atmp ← perturbType(i, n, right)
14 ptrbd ival[]← append(compression(Atmp,〈S, T 〉))
15 ptrbd[]← append(Atmp)

16 Atmp ← RealignClosest(i)
17 ptrbd ival[]← append(compression(Atmp,〈S, T 〉))
18 ptrbd[]← append(Atmp)

19 Atmp ← best(ptrbd ival[], ptrbd[])
20 if ptrbd ival[Atmp] < best ival then
21 A∗ ←Atmp
22 best ival← ptrbd ival[Atmp]

23 nIters← nIters+ 1

24 return A∗

There are five primitive perturbation operations defined for this algorithm. Four of these
primitive operations take 3 arguments: 1) the index�� of the matched block to operate upon,

��In these examples the first index is 1.

122 CHAPTER 6. SEARCHING FOR PAIRWISE STRUCTURAL ALIGNMENTS

2) the size of the operation to perform, and 3) the direction to perform the operation. The
meaning of the direction argument is dependent on the operation being performed, however it is
generally related to the use of gaps either left or right of the matched block. The fifth primitive
perturbation operation, RealignClosest, takes only one argument, the matched block index.
All of these operations are described below alongside minimal working examples.

ExtendMatchBlock(i,n,direction) : This primitive tries to extend the ith matched block
by n residues either on the left or right of the matched block depending on the direction

argument. That is, it tries to create new matches out of the deletes and inserts flanking
the matched block in the specified direction. The number of new matches is limited by
min(|inserts|, |deletes|) on either flank of the ith matched block. For example, there are
3 deletions and 3 insertions on the left of the matched block marked by ‘*’ characters over
residues 4,5,6,7 in T below. Therefore, the size of the matched block can be increased by a
maximum of three matches to the left. In the example below, it is extended at the left by
adding 2 matches for residues 2,3:

Before Operation After

123 4567

S XXX---XXXX

T ---XXXXXXX

1234567

ExtendMatchBlock (2, 2, left)

1 234567

X-XXXXXX

-XXXXXXX

1234567

ShrinkMatchBlock(i,n,direction) : This primitive tries to shrink the ith match block by n
residues either on the left or right of the matched block depending on the direction argument.
That is, it tries to remove matches by converting matched pairs of residues into insertions and
deletions flanking the current matched block in the specified direction. The number of removed
matches is limited by the size of the matched block being operated upon. In the example below,
the matched block index 1 marked by ‘*’ characters over residues 4,5,6,7 in T below is shrunk
from the right by converting the three matches between residues 5,6,7 into inserts and deletes,
thus shrinking the match block to a size of 1 between residues 4 in S and T :

Before Operation After

123 4567

S XXX---XXXX

T ---XXXXXXX

1234567

ShrinkMatchBlock (2, 3, right)

*

123 4 567

XXX---X---XXX

---XXXXXXX---

1234567

SwapMatch(i,n,direction : This primitive tries to swap n aligned residues across a monotonous
(only inserts, or only deletes) gapped region from an adjacent matched block to the ith matched
block (or vice versa) in the specified direction. The number of gaps remains constant but the
size of the block increases by the size of the swap. The size of the swap is limited by the
number of matched residues in the adjacent matched block. In the example below, the second
matched block, marked by ‘*’ characters, containing residues 7,8,9 from T is increased in size
by swapping the match of residue 3 in the adjacent matched block to the right. Thus increasing
the size of the second matched block by 1, now containing residues 6,7,8,9 from T :

6.3. SEARCHING FOR STRUCTURAL ALIGNMENTS USING I-VALUE 123

Before Operation After

123 456

S XXX---XXX

T XXXXXXXXX

123456789

SwapMatch (2, 1, right)

12 3456

XX---XXXX

XXXXXXXXX

123456789

SlideMatchBlock(i,n,direction) : This primitive tries to change the residue-residue corre-
spondences of the ith matched block by moving (or sliding) n residues in S left or right relative
to T according to the direction. Note that the number of correspondences in a block remains
constant or reduces (no new correspondences are created), and that a shift left in S is equivalent
to a shift right in T and vice-versa. The size of the shift is limited by the size of the matched
block being operated upon, plus the number of gaps available in the direction of the shift. Two
examples are shown below. The first involves shifting a matched block, the residues 1,2,3 in
S to the left by two positions reducing the match block for residues 1,2,3 in T to just 1. The
second example shows the same shift but this time to the right. In this case the shift is not
over gaps but over unaligned residues, resulting in no decrease in match block size for but a
change in which residues are aligned:

Before Operation After

123 456

S XXX--XXX

T XXXXX-XX

12345 67

SlideMatchBlock (1, 2, left)

*

123 456

XXX----XXX

--XXXXX-XX

12345 67

123 456

S XXX--XXX

T XXXXX-XX

12345 67

SlideMatchBlock (1, 2, right)

123456

--XXXXXX

XXXXX-XX

12345 67

RealignClosest(i) : This primitive is a special case in that it operates over an area and, thus,
no size or direction is given as an argument. This primitive is a limited version of the dynamic
programming algorithm used in step 4 of the phase 1 seeding procedure. It realigns the entire
region around the specified match block (including its flanking gaps), based on Cα-Cα distances
after superposition of the structures based using the current alignment. For example, assume
that in the alignment below all residue pairs in the first matched block marked by ‘*’ fit well.
Assume also, that the 2 inserted residues fit well with the 2 deleted residues. Performing the
RealignClosest(0) operation on this matched block results in an alignment of all 5 residues
in S: 1, 2, 3, 4, 5. Note however, that the original aligned block need not be preserved, and
could be replaced by a more well fitting set of matches for the given alignment.

Before Operation After

123 456

S XXX--XXX

T XXXXX--X

12345 6

RealignClosest (1)

123456

XXXXXX

XXXXXX

123456

The procedure begins by building a scoring matrix, D̄, from the residues in S and T ,
restricted to those contained in the matched blocks and surrounding adjacent inserted and

124 CHAPTER 6. SEARCHING FOR PAIRWISE STRUCTURAL ALIGNMENTS

deleted residues. Firstly, the entire structures are superimposed according to the unmodified
alignment, then, in the range of residues above, an inter-residue distance matrix is constructed
containing the distances between all pairs of residues from S and T in the restricted range.
Each value in D̄ is then computed as the inter-residue distance subtracted from the largest
inter-residue distance in the distance matrix.

Once D̄ has been constructed, a new alignment for the restricted range in S and T is
produced using a constant gap-penalty dynamic program. The recurrence relation is given
in Equation 6.3 with the gap penalty set to zero. Extracting the optimal path produces a
re-alignment of the restricted range around the indexed matched block. This re-aligned area
replaces the restricted range in the alignment.

All seed alignments produced from phase 1 are refined using the above primitives over
an EM algorithm, as defined in Algorithm 5. At each iteration, the algorithm attempts to
exhaustively perturb each match block using the above perturbation primitives, and greedily
chooses the best perturbation by assessing the level of compression using the I-value. This
continues until either the alignment converges (it always will but might take a long time) or
reaches the maximum number of iterations. This behaviour is intended to ensure the algorithm
explores the local space thoroughly around the starting point provided by the first, seeding
phase of MMLigner.

6.4 Results and Discussion

In this section, the performance of MMLigner is evaluated and compared with the following
popular structural alignment programs: CE (Shindyalov and Bourne, 1998), DALI (Holm and
Sander, 1993), LGA (Zemla, 2003), FatCat (Ye and Godzik, 2003), and TM-Align (Zhang and
Skolnick, 2005b). The evaluation takes three forms. First, the utility of MMLigner in reporting
alternate (competing) structural alignments is explored using case studies. Secondly, three
structural pairs from Sippl and Wiederstein (2008) on difficult structural alignments are used to
qualitatively compare the above alignment methods with MMLigner. And third, a quantitative
evaluation is undertaken on how well all of these alignment methods perform in discriminating
closely-related, moderately-diverged, highly-diverged and unrelated proteins as defined by the
SCOP (Murzin et al., 1995; Lo Conte et al., 2000) hierarchical domain classification database.
Here, the performance of these alignment programs is measured by the set of alignment quality
measures discussed in Chapter 4 and using the same set of 2500 randomly selected domain
pairs from Section 4.8 (also listed in Appendix A).

6.4.1 Identification of Alternate Structural Alignments

First case study: wwPDB 1EUD-A versus wwPDB 1CCW-A. Consider again the alpha
chains (chain A) from the pair of proteins: Succinyl-CoA synthetase from Sus scrofa (wwPDB
1EUD-A) and Glutamate mutase from Clostridium cochlearium (wwPDB 1CCW-A). As indicated
before, wwPDB 1EUD-A contains 306 amino acid residues, while wwPDB 1CCW-A contains 137
residues. The SCOP database dissects wwPDB 1EUD-A into two domains, d1euda1 (region
A:1-130) and d1euda2 (region A:131-306), and classifies them under different folds. The N-
terminal (CoA-binding) domain, d1euda1, falls under NAD(P)-binding Rossmann fold, while
the C-terminal domain, d1euda2, is classified under Flavodoxin-like fold. In contrast, SCOP
classifies wwPDB 1CCW-A as a small subunit domain, d1ccwa , also under the Flavodoxin-like
fold.

6.4. RESULTS AND DISCUSSION 125

Interestingly, the two domains of the Succinyl-CoA synthetase, d1euda1 and d1euda2, share
self-similarity and, hence, it is possible to align wwPDB 1CCW-A to either the N-terminal region
(A:1-130) or C-terminal region (A:131-306) of wwPDB 1EUD resulting in two alternate align-
ments. This structural pair is among a set of hard structural alignments identified by Sippl
and Wiederstein (2008).

MMLigner successfully identifies both these alignments (see Figure 6.2(e-g)). Of the other
programs, only DALI identifies both these alignments as being significant, while CE, FatCat,
TM-Align, and LGA yield just one significant alignment of wwPDB 1CCW-A involving the C-
terminal domain of wwPDB 1EUD-A. See Section 6.4.2 for further discussion about the quality
of structural alignments produced by these alignment methods.

Second case study: wwPDB 2SAS-A versus wwPDB 1JFJ-A. Consider the alpha chains
(chain A) from the pair of calcium-binding proteins from Branchiostoma lanceolatum (wwPDB
2SAS-A: 134 residues) and Entamoeba histolytica (wwPDB 1JFJ-A: 185 residues). The corre-
sponding domains in SCOP, d2sasa and d1jfja , are classified within the Calmodulin-like
family (suggesting close evolutionary relationship). Both the domains contain a duplication of
two EF-hand (helix-loop-helix) motifs. That is, there are four EF-hand motifs in each domain,
with two EF-hands forming the N-terminus subunit and two EF-hands forming the C-terminus
subunit. However, the duplicated subunits have markedly different geometries in each of the
proteins: while the subunits are flexed compactly in d2sasa , they are found to be relaxed in
d1jfja .

When aligning these two structures, there are four possible alignments matching each pos-
sible pair of EF-hands between the two proteins. Let these four possible alignments be denoted
by NN, NC, CN and CC, corresponding to the matching up of the pair of FH-hands at the
N-terminus or C-terminus part of the two proteins. MMLigner identifies all four alignments and
flags them as significant (since the I-value message lengths of all these alignments are shorter
than the null model message length). These alignments are shown as four distinct source-to-sink
colored paths on a 2D plot in Figure 6.3(a) and the corresponding least-squares superpositions
of wwPDB 2SAS-A on wwPDB 1JFJ-A are shown (with colors consistent with the 2D plot) in
Figure 6.3(b-c). See figure caption for more details.

Passing the same structural pair through other structural aligners for a comparison, it can
be seen that, excluding DALI, all other aligners return just one structural alignment of the four
possible alignments. Table 6.1 contains the coverage and RMSD values returned by the various
aligners. Notice that although DALI reports all four alignments, only two of them are reported
as competitive. MMLigner consistently produces good quality alignments on all the four cases.

To summarise, MMLigner is able to successfully identify a range of significant alternative
alignments, which are at least consistent with equivalent alignments produced by other align-
ment programs. These alternatives reveal structural relationships that are invisible when only
a single alignment is produced.

6.4.2 Performance of MMLigner on Hard Structural Alignment Cases

Three pairwise structural comparisons that are classified as ‘hard structural alignment prob-
lems’ by Sippl and Wiederstein (2008) are reported here. This dataset is used to assess the
quality of alignments reported by the alignment programs, mentioned earlier, on difficult to
align structure pairs, where multiple reasonable alternative alignments exist. The quality of
the alignments generated by these programs is shown in Table 6.2. This table gives the tradi-
tional coverage and RMSD measures. In addition, information-theoretic estimates of alignment

126 CHAPTER 6. SEARCHING FOR PAIRWISE STRUCTURAL ALIGNMENTS

Table 6.1: Assessment of structural alignments produced by MMLigner, DALI, FatCat, CE,
TM-Align, and LGA on the pair of calcium-binding domains, d2sasa and d1jfja . Align-
ment NN denotes the alignment of N-terminal subunit of d2sasa (residues 1 to 99) with the
corresponding N-terminal subunit of d1jfja (residues 1 to 70). Alignment CC denotes the
alignment of C-terminal subunit of d2sasa (residues 100 to 184) with the corresponding C-
terminal subunit of d1jfja (residues 71 to 134). (Similar definitions for the Alignments CN
and CC.) The Coverage column gives the number of residue-residue correspondences reported by
the respective alignment programs. The RMSD column gives the root-mean-squared-deviation
after best superposition in Åunits. The I(A) column gives the measure of alignment (descrip-
tive) complexity in bits. The compression column gives the difference between the null model
message length and the I-value for each alignment. The symbol ‘–’ is used when no alignment
is reported by the respective alignment program.

C
ov

er
ag

e

R
M

S
D

I
(A

)
(b

it
s)

C
om

p
re

ss
io

n
(b

it
s)

MMLigner

alignment NN 53 2.75 93.2 88.9
alignment NC 65 3.42 81.2 95.6
alignment CN 62 2.90 61.5 127.1
alignment CC 65 3.37 71.1 116.8

DALI

alignment NN 65 13.35 46.9 -306.3
alignment NC 66 3.73 92.5 59.8
alignment CN 80 12.53 65.2 -134.3
alignment CC 64 3.51 76.3 88.6

C
ov

er
ag

e

R
M

S
D

I
(A

)
(b

it
s)

C
om

p
re

ss
io

n
(b

it
s)

FatCat

– – – –
– – – –
– – – –

39 5.50 77.9 -58.3

CE

– – – –
– – – –
– – – –

73 4.55 72.2 88.1

C
ov

er
ag

e

R
M

S
D

I
(A

)
(b

it
s)

C
om

p
re

ss
io

n
(b

it
s)

TM-Align

– – – –
– – – –

67 3.13 73.7 114.2
– – – –

LGA

– – – –
– – – –

72 5.57 94.2 28.3
– – – –

(descriptive) complexity and of the compression they achieve based on the I-value measure are
provided. Note that a complex alignment, A in this context corresponds to one that takes a
long message, I(A), to encode. For the estimation of I(A) given in Section 5.2.1, the longer
the match/delete/insert blocks the simpler the alignment is measured to be.

The first two rows of Table 6.2 deal with the two alternate alignments for the pair ww-
PDB 1EUD-A versus wwPDB 1CCW-A discussed in Section 6.4.1. All the alignment programs
considered report one of the two alignments, while only MMLigner and DALI report both. In
the first case, LGA’s alignment was the worst overall in terms of coverage and RMSD, and was
flagged statistically insignificant by the I-value statistical significance test, since its I-value
message length is 5.2 bits longer the null model message length. FatCat and TM-Align produce
alignments with similar coverage but TM-Align’s RMSD is better. However, the alignment
complexity (I(A)) is significantly worse than that of FatCat’s alignment. On manual inspec-
tion, it can be seen that TM-Align aligns singleton or pairs of residues in regions of dissimilarity
purely on the grounds that they happen to drift close by in space. Manual inspection of the
other cases indicates that TM-Align often results in alignments with higher coverage than the
other alignment programs and with acceptable RMSD values but contains several spurious cor-
respondences and are, thus, more complex. DALI yields an alignment with similar coverage and
RMSD statistics as TM-Align, but with slightly less complex alignments. Both MMLigner and

6.4. RESULTS AND DISCUSSION 127

SCOP DOMAIN: d2sasa_
0 20 40 60 80 100 120 140 160 180

S
C

O
P

 D
O

M
A

IN
:

d
1
jf

ja
_

0

20

40

60

80

100

120

140

MMLigner generated Alignment NN (d2sasa

vs d1jfja

)

C-terminal EF-hand subunitsN-terminal EF-hand subunits

C
-t

e
rm

in
a
l
E

F
-h

a
n

d
 s

u
b

u
n

it
s

N
-t

e
rm

in
a
l
E

F
-h

a
n

d
 s

u
b

u
n

it
s

SCOP DOMAIN: d2sasa_
0 20 40 60 80 100 120 140 160 180

S
C

O
P

 D
O

M
A

IN
:

d
1
jf

ja
_

0

20

40

60

80

100

120

140

MMLigner generated Alignment NC (d2sasa

vs d1jfja

)

C-terminal EF-hand subunitsN-terminal EF-hand subunits

C
-t

e
rm

in
a
l
E

F
-h

a
n

d
 s

u
b

u
n

it
s

N
-t

e
rm

in
a
l
E

F
-h

a
n

d
 s

u
b

u
n

it
s

(a) (b) (c) (d)

SCOP DOMAIN: d2sasa_
0 20 40 60 80 100 120 140 160 180

S
C

O
P

 D
O

M
A

IN
:

d
1
jf

ja
_

0

20

40

60

80

100

120

140

MMLigner generated Alignment CN (d2sasa

vs d1jfja

)

C-terminal EF-hand subunitsN-terminal EF-hand subunits

C
-t

e
rm

in
a
l
E

F
-h

a
n

d
 s

u
b

u
n

it
s

N
-t

e
rm

in
a
l
E

F
-h

a
n

d
 s

u
b

u
n

it
s

SCOP DOMAIN: d2sasa_
0 20 40 60 80 100 120 140 160 180

S
C

O
P

 D
O

M
A

IN
:

d
1
jf

ja
_

0

20

40

60

80

100

120

140

MMLigner generated Alignment CC (d2sasa

vs d1jfja

)

C-terminal EF-hand subunitsN-terminal EF-hand subunits

C
-t

e
rm

in
a
l
E

F
-h

a
n

d
 s

u
b

u
n

it
s

N
-t

e
rm

in
a
l
E

F
-h

a
n

d
 s

u
b

u
n

it
s

(e) (f) (g) (h)

Figure 6.3: Four alignments identified by MMLigner when aligning the two calcium-binding
protein domains d2sasa and d1jfja . These alignments are denoted here as NN, NC, CN
and CC. (a,c,e,g) Identified alignments (NN, NC, CN, CC respectively) shown as paths from
source (bottom-left) to sink (top-right) on a 2D dot plot of MFPs found during the search in
the backdrop. (b,d,f,g) Superpositions of d1jfja on d2sas using the identified NN, NC, CN
and CC alignments, respectively.

CE produce similar alignments with the difference accounted for by the different levels of con-
servatism of their respective objective functions. In the second case, only MMLigner and DALI

produce an alternate alignment for the above structural pair. MMLigner produces the more
conservative and agreeable alignment of the two: DALI appears to be overly eager to extend
existing match blocks beyond where the structures show local similarity.

The pair d1euda1 versus d1euda2 (third row of Table 6.2) examines the structural self-
similarity of the two domains of the wwPDB 1EUD-A. MMLigner, CE, and TM-Align produce
agreeable alignments with minor differences that can be put down to differences in the objective
functions being optimised. Qualitatively, these alignments are similar. Other aligners, DALI,
FatCat, and LGA produce poor-quality alignments.

To summarise, MMLigner consistently produces reliable structural alignments for each of
these hard structural alignment cases from Sippl and Wiederstein (2008). CE in most cases
performs equally well, however it is unable to identify alternate alignments when they exist.
DALI and TM-Align produce good alignments in a good number of cases, but are sprinkled
with spurious correspondences upon closer inspection. LGA consistently produces the worst
alignments of the programs used in this comparison. Furthermore, MMLigner can identify
alternative alignments for the same structural pair when they exist, and it does so consistently
compared to other programs. Most programs are designed to report only one alignment.

128 CHAPTER 6. SEARCHING FOR PAIRWISE STRUCTURAL ALIGNMENTS

Table 6.2: Performance of several popular structural alignment programs on the hard structural
alignment cases reported by Sippl and Wiederstein (2008). The meaning of table headers is
the same as in Table 6.1. The alignment of wwPDB 1EUD-A versus wwPDB 1CCW-A should
generate two alternate structural alignments (see Section 6.4.1). The symbol ‘–’ is used when
an alignment program did not report an alignment.

Coverage RMSD I(A) Compression
MMLigner

1EUD-A vs. 1CCW-A 118 3.15 120.0 146.7
1EUD-A vs. 1CCW-A 98 3.17 111.4 108.2

d1euda1 vs. d1euda2 94 3.36 111.2 109.6

DALI

1EUD-A vs. 1CCW-A 125 3.77 139.9 91.4
1EUD-A vs. 1CCW-A 111 3.87 116.1 69.1

d1euda1 vs. d1euda2 122 11.4 93.3 -137.7

FatCat

1EUD-A vs. 1CCW-A 125 4.44 114.1 61.0
1EUD-A vs. 1CCW-A – – – –

d1euda1 vs. d1euda2 105 5.79 102.3 -14.3

Coverage RMSD I(A) Compression
CE

119 3.26 123.6 89.6
– – – –

97 3.39 112.8 97.3

TM-Align

125 3.45 146.8 68.6
– – – –

99 3.43 131.8 69.0

LGA

122 6.19 187.4 -5.2
– – – –

112 11.11 108.4 -88.4

6.4.3 Large Scale Comparison on SCOP Domains with Varying Struc-
tural Distance

Finally, a quantitative analysis on a large data set of protein structures is undertaken to assess
whether these programs can discriminate between protein structural pairs across the entire
spectrum of structural and evolutionary distance. A statistically large data set was selected
from SCOP. This is the same dataset used for experiments in Section 4.8 and in Section 5.3.
Domains were selected from SCOP using the procedure outlined in Appendix A, which also
gives a complete listing of the domains used.

As used previously, performance of the alignments generated by various programs is evalu-
ated using the descriptive statistics for observed coverage, RMSD alignment descriptive com-
plexity (I(A)) and compression gained (both in bits) using I-value. Analysing this large amount
of quantitative data across these four criterion requires efficient graphical representations to
glean clear insights.

Figure 6.4 presents a matrix of box-and-whisker plots, where the four rows correspond to
each of the four criteria: coverage, RMSD, alignment complexity and compression; and the six
columns correspond to the six alignment programs: MMLigner, CE, DALI, TM-Align, FatCat,
and LGA, respectively. Each plot in the matrix summarises, as notched box-and-whisker plots,
the distribution of data for a specific alignment program (in columns) measuring a specific
alignment quality criterion (in rows) across each of the 5 levels of the SCOP heirarchy: Family,
Superfamily, Fold, Class and Decoy.

Examining Figure 6.4, it can be seen that the median (red line within the box plots) statis-
tics for alignment coverage criterion corresponding to DALI, TM-Align, and LGA are similar and
dominate those corresponding to other programs, including MMLigner. The median alignment
coverage for CE and FatCat remains the most conservative over all the programs. However,
analysing coverage in isolation is not useful without putting it in the context of how well the
structures fit. Comparing the median alignment RMSD statistics after the best rigid-body su-
perposition of respective structures based on the generated alignments, it is clear that MMLigner
yields the most favourable profile across the SCOP groups, followed by CE and FatCat. DALI

and LGA yield alignments with poorest fits, especially for Family, Superfamily and Fold groups.

6.4. RESULTS AND DISCUSSION 129

M
M
L
i
g
n
e
r

C
E

D
A
L
I

T
M
-
A
l
i
g
n

F
a
t
C
a
t

L
G
A

Coverage

0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

RMSD 0123456789

1
0

0123456789

1
0

0123456789

1
0

0123456789

1
0

0123456789

1
0

0123456789

1
0

I(A)

0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

Compression

-1
0

0
0

-8
0

0

-6
0

0

-4
0

0

-2
0

00

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

-1
0

0
0

-8
0

0

-6
0

0

-4
0

0

-2
0

00

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

-1
0

0
0

-8
0

0

-6
0

0

-4
0

0

-2
0

00

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

-1
0

0
0

-8
0

0

-6
0

0

-4
0

0

-2
0

00

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

-1
0

0
0

-8
0

0

-6
0

0

-4
0

0

-2
0

00

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

-1
0

0
0

-8
0

0

-6
0

0

-4
0

0

-2
0

00

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

F
ig

u
re

6.
4:

N
ot

ch
ed

b
ox

-a
n
d
-w

h
is

ke
r

p
lo

ts
d
is

p
la

y
in

g
th

e
d
is

tr
ib

u
ti

on
of

va
ri

ou
s

cr
it

er
ia

ac
ro

ss
50

0
×

5
=

25
00

al
ig

n
m

en
ts

.
C

ol
u
m

n
s

in
d
ic

at
e

th
e

al
ig

n
m

en
t

p
ro

gr
am

u
se

d
to

al
ig

n
th

e
en

ti
re

d
at

a
se

t:
M
M
L
i
g
n
e
r
,
C
E
,
D
A
L
I
,
T
M
-
A
l
i
g
n
,
F
a
t
C
a
t
,

an
d
L
G
A
.

R
ow

s
in

d
ic

at
e

va
ri

ou
s

al
ig

n
m

en
t

cr
it

er
ia

:
C

ov
er

ag
e,

R
M

S
D

,
I
(A

)
an

d
C

om
p
re

ss
io

n
.

N
ot

e
th

at
th

e
or

d
in

at
e

sc
al

e
fo

r
ea

ch
of

th
e

fo
u
r

cr
it

er
ia

h
as

b
ee

n
fo

rc
ed

to
b

e
fi

x
e
d

to
th

ei
r

re
sp

ec
ti

ve
ra

n
ge

s
so

as
to

m
ak

e
th

e
co

m
p
ar

is
on

s
b

et
w

ee
n

p
lo

ts
ac

ro
ss

al
ig

n
m

en
t

p
ro

gr
am

s
m

or
e

ac
ce

ss
ib

le
.

W
it

h
in

g
ea

ch
co

lu
m

n
,

le
ft

to
ri

gh
t,

ar
e

d
at

a
fo

r:
F

am
il
y,

S
u
p

er
fa

m
il
y,

F
ol

d
,

C
la

ss
,

an
d

D
ec

oy
.

130 CHAPTER 6. SEARCHING FOR PAIRWISE STRUCTURAL ALIGNMENTS

Since their coverage statistics dominate over the other alignment programs, it can be inferred
that DALI and LGA have a tendency to over-align residues at the cost of a poorer fit between the
structures. This behaviour has been observed on more careful manual study of many alignments
and superpositions (similar to what was observed above for the hard structural alignment cases
described by Sippl and Wiederstein (2008).) TM-Align’s RMSD profile, although poorer than
programs such as MMLigner, CE, and FatCat, remains reasonably well behaved for the Family,
Superfamily and Fold groups. However, as noted in the previous section, upon manual inspec-
tion of individual cases, TM-Align tends to greedily align spurious residues when they appear
spatially proximal even though that is by chance, yielding more complex alignments than what
is acceptable. This behaviour can be observed by studying the plots for TM-Align alignment
complexity which steadily increases from Family through to Decoy and is substantially larger
than that of other alignment programs (except for LGA) from Fold through to Decoy.

Analysing the spread of the interquartile (IQR) range across the alignment programs for
coverage and RMSD, MMLigner appears to produce the most balanced alignment of all. The
compactness of these boxes indicates its consistency over other programs to identify meaningful
structural alignments. The non-overlap of the notches (that, as indicated earlier, signifies the
95% confidence interval) of MMLigner plots suggest that the medians are statistically different.
No other program produces non-overlapping notches between boxes across all groups for the
coverage statistics. Notice that MMLigner coverage gradually decreases moving from Family to
Superfamily to Fold. However coverage falls significantly when moving from Fold to Class and
decreases further for the Decoy group. The median coverage MMLigner produces for the Class
group sits at 35 correspondences, and the median for the decoy set sits at 18 correspondences.
These correspondences are due to MMLigner rightly aligning up to two distinct supersecondary
structures, often involving long helices, for the Class data set. For the Decoy set, these corre-
spondences are found at the level of one supersecondary structure on average. The concavity of
the RMSD median lines for MMLigner highlights what should be expected of this data set, where
the RMSD grows from Family to Fold as the structural distance grows, but decreases sharply
for Class and Decoy groups, as the relationship is rather a simple one involving supersecondary
structural matches.

This concavity is also seen in the alignment complexity plots (third row of Figure 6.4)
for MMLigner, CE, DALI, and FatCat where the descriptive complexity of alignments increases
with the growing structural distance moving from Family to Fold, but decreases for Class
and furthermore for Decoy groups where the relationship is, on average, a simple one. The
continuously increasing alignment complexities for TM-Align and LGA is suggestive of over-
alignment when the relationship is increasingly tenuous.

The final (fourth row) of Figure 6.4 shows the I-value information criterion, the total com-
pression gained (in bits) by the alignment programs compared to the null model description of
the structural coordinates. It is not surprising that MMLigner gives the best compression over-
all, as this is the objective of the heuristic search (see Section 6.3) that MMLigner is trying to
optimise. However, it provides useful information as the horizontal line at 0 bits is the discrim-
inating line for statistical significance in the I-value information-theoretic framework. When
compression is positive (above the zero line), the alignment provides a more compact lossless
explanation of the coordinates of the protein structural pair being aligned than their null model
(coordinates stated independently) description and, hence, that alignment should be accepted
as statistically significant. On the other hand, when the compression is negative (below the
zero line) the lossless explanation is longer than the null model message length and, hence,
the alignment should be rejected. Based on this, MMLigner’s boxes (hence, their corresponding
alignments) for Family, Superfamily and Fold are always above the zero line suggesting that

6.4. RESULTS AND DISCUSSION 131

these alignments are significant as measured by the I-value. The first quartile line for Class
group and the second quartile line for Decoy group lies on zero. Surprisingly, excepting CE,
on average other alignment programs produce alignments for the SCOP Fold group which are
below the zero line. Note that DALI does not return any alignment for most of the Class and
Decoy sets. The program is trained to discriminate true negatives, but is less accurate when
aligning proteins that are true positives in terms of evolutionary relationship.

It is useful to compare how alignments produced by MMLigner perform when using other
criteria for alignment quality. The scoring functions used here are the same as those used
previously in Chapters 4 and 5. Those scoring functions are: DALI z-score (Holm and Sander,
1993), TM-Score (Zhang and Skolnick, 2004), MI and SI (Kleywegt and Jones, November 1994),
GDT TS and LGA S3 (Zemla, 2003), SAS (Subbiah et al., 1993), and GSAS (Kolodny et al., 2005).

As above, Figures 6.5 and 6.6 present a matrix of box-and-whisker plots where, in this case,
the six columns correspond to each of the six structural alignment programs: MMLigner, CE,
DALI, TM-Align, FatCat, and LGA. The ten rows, spread over the two figures, correspond to the
ten alignment quality criteria. Each plot in the matrix summarises, as notched box-and-whisker
plots, the distribution of data for a specific alignment program measuring a specific alignment
quality criterion across each of the 5 levels of the SCOP heirarchy: Family, Superfamily, Fold,
Class and Decoy.

The performance of the various alignment programs is summarised, from Figures 6.5 and
6.6 in Table 6.3. This table shows the best performing alignment program as ranked by the
various structural alignment quality measures across the levels of the SCOP hierarchy.

Table 6.3: A summary of the (median) best performing alignment program (rows) accoring
to the scoring functions (columns) for each level of the SCOP hierarchy. Detailed results are
shown in Figures 6.5 and 6.6

I-value
compression STRUCTAL score DALI z-score TM-Score GDT TS LGA S3 MI SI SAS GSAS

Family MMLigner TM-Align TM-Align TM-Align MMLigner MMLigner MMLigner CE CE CE

Superfamily MMLigner TM-Align TM-Align TM-Align MMLigner MMLigner TM-Align CE CE CE

Fold MMLigner TM-Align TM-Align TM-Align MMLigner MMLigner TM-Align CE CE FatCat

Class MMLigner FatCat DALI TM-Align MMLigner MMLigner TM-Align MMLigner MMLigner –
Decoy MMLigner CE MMLigner/DALI TM-Align CE CE TM-Align CE TM-Align –

All alignment programs generate alignments that show (in Figure 6.5) the expected decay
with the levels of the SCOP heirarchy. It is to be expected that the alignment programs will
generate the best alignment according to their native scoring function. This is the case for
MMLigner and TM-Align, but not the case for DALI where TM-Align followed by MMLigner

perform even better on all levels of the SCOP hierarchy (except domains in the same class).
And the native scores for LGA grade MMLigner as producing the best alignments at all levels
of the SCOP hierarchy except for decoy domains. Counter-intuitively, MMLigner Class level
alignments are scored better than MMLigner Fold level alignments using both GDT TS and LGA S3.
This is likely an artifact of these scoring functions being designed to grade the quality of
structures predicted from sequence, where the alignment state string is mostly (or entirely)
made up from match states. MMLigner finds very few correspondences between domains that
share a Class level relationship, but they are relatively well fitting (see Figure 6.4).

To summarise, MMLigner is able to produce highly consistent structural alignments com-
pared to all other programs being compared in this chapter. True to the MML framework
that relies on achieving an accurate trade-off between hypothesis (here, alignment) complexity
and its fit with the observed data (here, the lossless explanation of structural coordinates).
MMLigner consistently identifies meaningful alignments, avoids pairing up spurious correspon-
dences, and prefers simple alignments over complex ones. Furthermore, structural alignments

132 CHAPTER 6. SEARCHING FOR PAIRWISE STRUCTURAL ALIGNMENTS

M
M
L
i
g
n
e
r

D
A
L
I

T
M
-
A
l
i
g
n

L
G
A

C
E

F
a
t
C
a
t

null - I-value

-1
0

0
0

-8
0

0

-6
0

0

-4
0

0

-2
0

0 0

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

-1
0

0
0

-8
0

0

-6
0

0

-4
0

0

-2
0

0 0

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

-1
0

0
0

-8
0

0

-6
0

0

-4
0

0

-2
0

0 0

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

-1
0

0
0

-8
0

0

-6
0

0

-4
0

0

-2
0

0 0

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

-1
0

0
0

-8
0

0

-6
0

0

-4
0

0

-2
0

0 0

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

-1
0

0
0

-8
0

0

-6
0

0

-4
0

0

-2
0

0 0

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

DALI z-score

-1
0

0

-8
0

-6
0

-4
0

-2
0 0

2
0

4
0

6
0

8
0

1
0

0

-1
0

0

-8
0

-6
0

-4
0

-2
0 0

2
0

4
0

6
0

8
0

1
0

0

-1
0

0

-8
0

-6
0

-4
0

-2
0 0

2
0

4
0

6
0

8
0

1
0

0

-1
0

0

-8
0

-6
0

-4
0

-2
0 0

2
0

4
0

6
0

8
0

1
0

0

-1
0

0

-8
0

-6
0

-4
0

-2
0 0

2
0

4
0

6
0

8
0

1
0

0

-1
0

0

-8
0

-6
0

-4
0

-2
0 0

2
0

4
0

6
0

8
0

1
0

0

TM-Score

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

GDT TS

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

LGA S3

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

F
igu

re
6.5:

N
otch

ed
b

ox
-an

d
-w

h
isker

p
lots

for
th

e
2500

align
m

en
ts.

C
olu

m
n
s

in
d
icate

th
e

align
m

en
t

p
rogram

:
M
M
L
i
g
n
e
r
,
D
A
L
I
,
T
M
-
A
l
i
g
n
,

L
G
A
,
C
E
,

an
d
F
a
t
C
a
t
.

R
ow

s
in

d
icate

th
e

align
m

en
t

q
u
ality

criteria.
G

rou
p

ed
w

ith
in

each
colu

m
n

(left-to-righ
t):

F
am

ily,
S
u
p

erfam
ily,

F
old

,
C

lass,
D

ecoy.

6.4. RESULTS AND DISCUSSION 133

M
M
L
i
g
n
e
r

D
A
L
I

T
M
-
A
l
i
g
n

L
G
A

C
E

F
a
t
C
a
t

STRUCTALscore -8
0

0
0

-6
0

0
0

-4
0

0
0

-2
0

0
00

2
0

0
0

4
0

0
0

-8
0

0
0

-6
0

0
0

-4
0

0
0

-2
0

0
00

2
0

0
0

4
0

0
0

-8
0

0
0

-6
0

0
0

-4
0

0
0

-2
0

0
00

2
0

0
0

4
0

0
0

-8
0

0
0

-6
0

0
0

-4
0

0
0

-2
0

0
00

2
0

0
0

4
0

0
0

-8
0

0
0

-6
0

0
0

-4
0

0
0

-2
0

0
00

2
0

0
0

4
0

0
0

-8
0

0
0

-6
0

0
0

-4
0

0
0

-2
0

0
00

2
0

0
0

4
0

0
0

MI

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.91

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.91

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.91

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.91

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.91

0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.91

SI

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

SAS 05

1
0

1
5

2
0

2
5

3
0

3
5

4
0

05

1
0

1
5

2
0

2
5

3
0

3
5

4
0

05

1
0

1
5

2
0

2
5

3
0

3
5

4
0

05

1
0

1
5

2
0

2
5

3
0

3
5

4
0

05

1
0

1
5

2
0

2
5

3
0

3
5

4
0

05

1
0

1
5

2
0

2
5

3
0

3
5

4
0

GSAS

0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

F
ig

u
re

6.
6:

(C
on

ti
n
u
ed

fr
om

F
ig

u
re

6.
5)

.
N

ot
ch

ed
b

ox
-a

n
d
-w

h
is

ke
r

p
lo

ts
of

th
e

25
00

al
ig

n
m

en
ts

.
C

ol
u
m

n
s

in
d
ic

at
e

th
e

al
ig

n
m

en
t

p
ro

gr
am

:
M
M
L
i
g
n
e
r
,
D
A
L
I
,
T
M
-
A
l
i
g
n
,
L
G
A
,
C
E
,
an

d
F
a
t
C
a
t
.

R
ow

s
in

d
ic

at
e

th
e

al
ig

n
m

en
t

q
u
al

it
y

cr
it

er
ia

.
G

ro
u
p

ed
w

it
h
in

ea
ch

co
lu

m
n

(l
ef

t-
to

-r
ig

h
t)

:
F

am
il
y,

S
u
p

er
fa

m
il
y,

F
ol

d
,

C
la

ss
,

D
ec

oy
.

134 CHAPTER 6. SEARCHING FOR PAIRWISE STRUCTURAL ALIGNMENTS

generated by MMLigner are considered at least competitive according to other popular measures
of structural alignment quality. Sometimes performing better on a scoring function than the
native alignment program, and sometimes revealing flaws in a scoring function when the score
is used for general purpose structural alignment.

6.5 Conclusions

The importance of finding biologically meaningful structural alignments has led to the intensive
development of methods for generating alignments and evaluating their quality. These methods,
however, often produce conflicting results and none has been generally accepted as clearly
superior (Kolodny et al., 2005; Sippl and Wiederstein, 2008; Hasegawa and Holm, 2009; Slater
et al., 2013; Ma and Wang, 2014).

This chapter builds upon the MML based I-value structural alignment quality assessment
measure developed in Chapters 4 and 5, to present a very reliable pairwise alignment pro-
gram called MMLigner. MMLigner is not only able to find high quality alignments for protein
structure pairs, but is also able to explore a range of potential significant alternative align-
ments. The results of rigorous testing of MMLigner on a large data set of domain pairs from the
SCOP database and selected difficult to align case studies are presented. As noted in previous
chapters, there is not gold standard against which to decide which program produces the best
alignments. That being said, the performance of MMLigner is highly competitive compared to
several popular structural alignment programs, and indeed is more reliable than others in ex-
ploring alternate structural alignments (when they exist) and when dealing with hard structural
alignment cases.

Chapter 7

Ancillary Methods: (1) Comparing Top
k Lists and (2) Sufficient Statistics of
Least-Squares Superposition

“The asymptotically best algorithms frequently turn out to be worst on
all problems for which they are used.”

— Cantor and Zassenhaus (1981)

This chapter presents the ancillary computational methods used in Chapter 4 to compare
ranked lists; and in Chapter 6 to rapidly compute seed alignments. The chapter is divided
into two main parts. The first introduces a new information measure for comparing any two
top k lists. It provides an objective trade-off between criteria that measure the dis-similarity
between lists, addressing pitfalls in the existing measures.

The second part presents a set of sufficient statistics for the least-squares superposi-
tion problem under the least squares criterion. These statistics provide an efficient way
to operate (via addition and deletion of vectors) on previously computed superpositions.
Benchmarking demonstrates a drastic improvement in the computational effort required to
compute RMSD using sufficient statistics.

The research presented in this chapter was published in the following papers:
Collier, J. H., Konagurthu, A. S. (2014). An information measure for comparing top-k lists.

In IEEE 10th International Conference on eScience (eScience). pp. 127–134.

Konagurthu A. S., Kasarapu, P., Allison, L., Collier, J. H., Lesk, A. M. (2015), On Suffi-
cient Statistics of Least-Squares Superposition of Vector Sets. Journal of Computational
Biology. 22(6): 487–497.

135

136 CHAPTER 7. ANCILLARY METHODS

7.1 An Information Measure for Comparing Top k Lists

R
anked results are produced in diverse settings, from the web page results of search engines
to genes in differential gene co-expression experiments or comparisons of alignment quality

across different measures, as seen in Section 4.8.3. A routine task that follows is the assessment
of variability between top-k ranked elements between two or more related lists.

Comparing top k lists has received much attention over the past decade. Among the most
cited work on this topic is that of Fagin et al. (2003), which proposes an easy-to-compute
metric built on Spearman’s foot rule (Spearman, 1904). Formally, if π1 and π2 define two
permutations from the symmetric group Sn of all permutations of n elements, Spearman’s foot
rule gives the L1 distance between the ranks of corresponding elements in the two permutations
as: L1(π1, π2) =

∑n
i=1 |π1(i)− π2(i)|, where any π1(i) or π2(i) is the position (rank) of the ith

element in the permutation, given some total ordering of n elements. Fagin et al. (2003) extend
this metric to compare two top k lists in the presence of non-overlapping elements (i.e., elements
that are in one list but not in the other). This is achieved by fixing the contribution, to the
distance, of the non-overlapping elements to a value greater than k, typically (k+1). Formally,
the extended metric for two top k lists τ1 and τ2 is defined as L1(τ1, τ2) = 2(k − |τ1 ∩ τ2|)(k +
1) +

∑
i∈τ1∩τ2 |τ1(i)− τ2(i)| −

∑
i∈τ1−τ2 τ1(i)−

∑
i∈τ2−τ1 τ2(i) where τ1 ∩ τ2 is the set of elements

that overlap between the two lists, |τ1∩ τ2| denotes the number of overlapping elements, τ1− τ2

gives the non-overlapping elements in τ1, and τ2 − τ1 gives those in τ2.
Although this measure can be shown to have good mathematical properties, in practice,

it has crucial limitations. Importantly, the term 2(k − |τ1 ∩ τ2|)(k + 1) grows quadratically
for increasing values of k and decreasing proportion of overlapping elements. In fact, in many
applications requiring comparison of top k lists (e.g., web search results), non-overlapping
elements form a significant proportion of the lists. Furthermore, this metric is insensitive to
the absolute ranks of the overlapping elements in the respective lists; when computing the L1

distance, the overlapping elements are re-ranked and, hence, ignore the displacement of these
elements when comparing two lists.

Another commonly used metric is based on Kendall tau distance (Kendall, 1938), or, col-
loquially, the bubble-sort distance, since it measures the number of adjacent transpositions
required to convert (i.e., sort) one permutation to another. Formally, for any two permu-
tations π1 and π2, Kendall tau distance is defined (using the same notations as above) as
K(π1, π2) =

∑
∀1≤i<j≤n κi,j(π1, π2), where κi,j(π1, π2) = 0 if π1(i) < π1(j) and π2(i) < π2(j),

or κi,j(π1, π2) = 1 otherwise. Extending this idea, the following cost function was proposed
to compare two top k lists (Fagin et al., 2006): K(τ1, τ2) = (k − |τ1 ∩ τ2|)((2 + p)k − p|τ1 ∩
τ2|+ 1− p) +

∑
i∈τ1∩τ2 κi,j(τ1, τ2)−

∑
i∈τ1−τ2 τ1(i)−

∑
i∈τ2−τ1 τ2(i) where, p is a tunable penalty

parameter to account for the transposition distance between non-overlapping elements in τ1

and τ2. However, it is easy to see that this metric is also sensitive to the size of non-overlapping
elements in the two lists, in addition to the choice of penalty parameter p.

Other measures have been proposed on specialised applications (Bar-Ilan et al., 2006; Budin-
ska et al., 2011; Fury et al., 2006; Pearson, 2007; Jurman et al., 2009, 2012). Noteworthy among
these is the Canberra distance (Lance and Williams, 1966) between top k lists (Jurman et al.,
2012). This distance is a weighted variant of Spearman’s L1 distance, and ensures that the
displacement of elements with higher ranks is penalised more than those with lower ranks.

Here, a new information measure is introduced to compare any two top k lists. The method
is built on the statistical framework of minimum message length encoding (MML; Wallace
and Boulton (1968); Wallace (2005); see Section 3.3.3), and investigates the compressibility
of top k lists. Intuitively, closely related lists have more information in common (and are,

7.1. AN INFORMATION MEASURE FOR COMPARING TOP K LISTS 137

hence, more compressible) than the lists that are poorly related. Thus, the length of the
losslessly compressed message gives a natural and rigorous measure to estimate the variability
between two lists. Unlike previous work, this measure achieves an objective trade-off between
conflicting criteria, measuring the variability between lists. Mainly, these include: (1) the
measurement of dissimilarity, (2) the measurement of disarray of its overlapping elements, and
(3) the displacement of the positions (ranks) of these elements.

Note that measuring the true information content of any data is incomputable. This follows
from the fact that Solomonoff-Kolmogorov-Chaitin Complexity (Kolmogorov, 1963; Solomonoff,
1964; Chaitin, 1966) is undecidable. However, effective and efficient statistical models for data
compression provide reasonable upper bounds (i.e., estimates) of true information content.
Further, this section provides an approach to estimate the information content in any given
pair of top k lists. To keep this approach general, the models of compression use simple priors.
However, it is important to note that this information theoretic framework can be adapted to
individual contexts by accommodating prior knowledge about rankings in those settings.

The rest of the section is organised as follows. Section 7.1.1 introduces the information mea-
sure formally and describes some interesting mathematical properties. Section 7.1.2 explains
the practical details involved in estimating the information content of two lists. Section 7.1.3
benchmarks the information measure with other popular distance metrics on ranked lists.

7.1.1 Information Measure for Comparing Ranked Lists

The mathematical underpinning of the information measure to compare any two top k lists is
established here. To do this, this section recalls concepts introduced earlier in Section 3.2. For
details of how this information measure is realised in practice, see Section 7.1.2.

Definition 1. (Shannon’s information content of an outcome)
The information content of an outcome E whose probability is Pr(E) is given by I(E) =
− log (Pr(E)).

We note that I(E) corresponds to the (theoretical) lower bound on the length of the optimal
code required to losslessly encode the outcome E, as shown by Shannon’s seminal work on the
mathematical theory of communication (Shannon, 1948).

Lemma 1. (Measure of Information between two top k lists)
For two top k lists, τ1 and τ2, the total amount of information contained in them is I(τ1, τ2) =
I(τ1) + I(τ2|τ1)

Proof. Using the product rule of probability, the joint probability of the two top k lists, Pr(τ1, τ2)
is the product of the probability of the first list, Pr(τ1), and the probability of the second list
conditioned on the first, Pr(τ2|τ1):

Pr(τ1, τ2) = Pr(τ1)× Pr(τ2|τ1)

Taking the negative logarithm on both sides and applying Shannon’s insight in Definition 1
to these probabilities, gives the identity: I(τ1, τ2) = I(τ1) + I(τ2|τ1)

Lemma 2. I(τ1, τ2) ≤ I(τ1) + I(τ2)

Proof. When the two top k lists are independent of each other

Pr(τ1, τ2) = Pr(τ1)× Pr(τ2|τ1) = Pr(τ1)× Pr(τ2)

138 CHAPTER 7. ANCILLARY METHODS

This implies that Pr(τ1, τ2) ≥ Pr(τ1)×Pr(τ2). Translating this into information terms by taking
the negative logarithm on both sides, results in I(τ1, τ2) ≤ I(τ1) + I(τ2).

Informally, if τ1 and τ2 are independent of each other, that is, if the knowledge of one list
does not inform the contents of the other list, the joint information content in these lists is
the sum of the information content in each of the lists taken separately, i.e., I(τ1) + I(τ2).
This Section uses the term NULL(τ1, τ2) in this work to define this upper bound on the joint
information in the two top k lists.

Lemma 3. Given three top k lists, τ1, τ2 and τ3,

I(τ1, τ2)− I(τ1, τ3) = log

(
Pr(τ3|τ1)

Pr(τ2|τ1)

)
Proof. Using Lemma 1

I(τ1, τ2) = I(τ1) + I(τ2|τ1) and

I(τ1, τ3) = I(τ1) + I(τ3|τ1).

Subtracting the two terms,

I(τ1, τ2)− I(τ1, τ3) = I(τ1) + I(τ2|τ1)− (I(τ1) + I(τ3|τ1))

= I(τ2|τ1)− I(τ3|τ1)

= − log (Pr(τ2|τ1)) + log (Pr(τ3|τ1))

= log

(
Pr(τ3|τ1)

Pr(τ2|τ1)

)
.

In other words, the difference above gives the log-odds conditional probability (or posterior)
ratio between the lists being compared. This establishes a rigorous statistical framework to
compare ranked lists.

A corollary of this property is that the information divergence between any two given top
k lists can be defined by treating τ3 as a separate list which happens to be an identical copy of
τ1 as defined below.

Definition 2. (Information divergence or cost)
The information distance between two top k lists is measured as I(τ1, τ2) − I(τ1, (τ3 ≡ τ1)) =
I(τ2|τ1)− I((τ3 ≡ τ1)|τ1).*

Since the information divergence defined above is a function of conditional information terms
on the right hand side, we analyse below the metrical properties of conditional information
between top k lists.

Property 1. (Directed acyclic triangular inequality of conditional information)
For three top k lists, τ1, τ2, and τ3:

*I((τ3 ≡ τ1), τ1) should not be confused with I(τ1) as the former measures the joint information in two
separate lists that happen to be identical. For I(τ3 ≡ τ1, τ1) = I(τ1) + I((τ3 ≡ τ1)|τ1) = I(τ1) implies that
the conditional probability I((τ3 ≡ τ1)|τ1) = 0, which is the same as saying Pr((τ3 ≡ τ1)|τ1) = 1, suggesting
absolute certainty that τ3 is identical to τ1; this will be incorrect.

7.1. AN INFORMATION MEASURE FOR COMPARING TOP K LISTS 139

I(τ1|τ2) ≤ I(τ1|τ3) + I(τ3|τ2)

τ2τ1 τ3

I(τ1|τ3)

I(τ1|τ2) I(τ3|τ2)

Proof. This follows by expanding the joint information in the three lists as follows:

I(τ1, τ2, τ3) = I(τ3) + I(τ1, τ2|τ3) = I(τ2) + I(τ1, τ3|τ2)

= I(τ3) + I(τ1|τ3) + I(τ2|τ1, τ3)

= I(τ2) + I(τ1, τ3|τ2)

= I(τ3) + I(τ1|τ3) + I(τ2|τ3)

≥ I(τ2) + I(τ1, τ3|τ2)

Rearranging terms:

(I(τ3) + I(τ2|τ3)) + I(τ1|τ3) ≥ I(τ2) + I(τ1, τ3|τ2)

=⇒ I(τ2, τ3) + I(τ1|τ3) ≥ I(τ2) + I(τ1, τ3|τ2)

=⇒ (I(τ2, τ3)− I(τ2)) + I(τ1|τ3) ≥ I(τ1, τ3|τ2)

=⇒ I(τ3|τ2) + I(τ1|τ3) ≥ I(τ1, τ3|τ2)

=⇒ I(τ3|τ2) + I(τ1|τ3) ≥ I(τ1|τ2) + I(τ3|τ1, τ2)

=⇒ I(τ3|τ2) + I(τ1|τ3) ≥ I(τ1|τ2)

Property 2. (Conditional Information is not symmetric)

I(τ1|τ2) 6= I(τ2|τ1)

Proof. From the product rule of probability (Bayes and Price, 1763):

Pr(τ1, τ2) = Pr(τ1) Pr(τ2|τ1) = Pr(τ2) Pr(τ1|τ2).

Applying Definition 1:

I(τ1, τ2) = I(τ1) + I(τ2|τ1) = I(τ2) + I(τ1|τ2)

Rearranging the terms above:

I(τ1|τ2) = I(τ2|τ1) + I(τ2)− I(τ1),

proving the asymmetry between I(τ1|τ2) and I(τ2|τ1).

Property 3. (Near-coincidence of conditional information)
For any two separate yet identical top k lists τ1 and τ2 ≡ τ1: I((τ2 ≡ τ1)|τ1) = ε, where ε is
some small constant.

Proof. This follows because I(τ1, τ2) = I(τ1)+I(τ1|τ2). Since τ2 is the same as τ1, the additional
conditional information required to state a list that is an identical copy of another list, is a
small constant (in number of bits/nits required to transmit this identity).

These properties suggest that the information measure defined here possesses near-metrical
properties, which are useful to compare top k lists.

140 CHAPTER 7. ANCILLARY METHODS

7.1.2 Realising the Information Measure in Practice

This section describes an approach to realise an information theoretic measure to quantify the
variability of two top k lists. This information measure can be better understood in the context
of a communication process between an imaginary pair of transmitter (Alice) and receiver (Bob).

Imagine Alice has access to two top k lists τ1 and τ2. Her goal is to communicate the
information in both these lists to Bob losslessly – exactly as she sees it. To achieve this, Alice
constructs a two-part message. In the first, she will transmit τ1 taking I(τ1) bits. In the second,
she uses the commonality (if any) between the two lists so that τ2 can be transmitted more
concisely; this takes I(τ2|τ1) bits.

In this information theoretic framework the measure of (dis-)similarity between two top k
lists is the total length of this two-part message: I(τ1)+I(τ2|τ1). It is easy to see that if τ2 ≡ τ1,
the second part is extremely concise. On the other hand, if τ2 is completely unrelated to τ1,
then the amount of information to transmit the second list given the first, I(τ2|τ1), cannot be
shorter than I(τ2).

To achieve lossless transmission of the two lists between Alice and Bob, the following pieces
of information are necessary:

1. The size k = |τ1| = |τ2| of these top k lists.

2. The elements in τ1, in the order they appear.

3. The overlapping elements between τ1 and τ2.

4. The ranks of the overlapping elements in τ2.

5. The permutation of overlapping elements in τ2 with respect to the ordering defined by τ1.

6. The non-overlapping elements in τ2 in the order they appear in that list.

In transmitting the above information, two distinct cases have to be considered:

Case 1: When the domain of elements being ranked is known, of which τ1 and τ2 are (partial)
top k lists. For instance, it is common in differential gene expression studies for the total
domain of genes and their labels (identifiers) to be known, and a set of top 50 differentially
expressed genes between two experiments be considered.

Case 2: Conversely, when the domain of ranked elements remains unknown. For instance, in
search results from popular web search engines, while the top search results can be seen,
the number of pages each search engine indexes is variable (and unknown) and is often
smaller than the universe of pages available on the internet.

In the remaining part of this section, these two cases are handled separately and the descrip-
tion the encoding schemes to transmit each of the enumerated pieces of information follows.

Case 1: Known Domain of Elements

Assume the size (N) of the domain is known, along with the labels (or identifiers) of elements
in it.

7.1. AN INFORMATION MEASURE FOR COMPARING TOP K LISTS 141

Step 1: Transmitting the size of the top k lists The size of k ≤ N is transmitted as an
integer code. Since both Alice and Bob know that the top k lists come from a domain of N
elements, a simple encoding of k takes log(N) bits, assuming an uniform distribution over the
choices of k in the range 1 ≤ k ≤ N . Note that more sophisticated encodings can be defined if
there is a prior belief that the distribution of k is non-uniform.

Step 2: Transmitting τ1 Transmitting the information in τ1 can be achieved by commu-
nicating, over an integer code, the lexicographic index associated with τ1 in some (mutually
agreed) lexicographic ordering of the k-permutations of N elements. Since both Alice and
Bob know the domain from which the ranking was generated, the lexicographic ordering of
k-permutations can be treated as a part of the code book of communication.

Step 3: Transmitting overlapping elements between τ1 and τ2 At this stage Bob
already knows τ1. To nominate the overlapping elements, that is, the intersection between the
two top k lists, a bit mask b1 is defined, where the set bits indicate the positions in τ1 where the
overlapping elements reside. The transmission complexity of stating the intersection between
τ1 and τ2 is same as the complexity of this bit mask. An efficient encoding scheme to transmit
this bit mask, assuming no prior knowledge about the distribution of the set bits, would be
using an adaptive code over a binomial distribution.

The mask b1 is a binary sequence of length k. The adaptive encoding requires maintaining
two running counters that count incrementally the number of 0s and number of 1s, starting
from an initial value of 1. Traversing the bit mask left to right, for every symbol in b1, Alice
estimates its probability by dividing the current state of the symbol’s counter by the sum of the
two counters. After the probability is estimated, Alice increments the corresponding counter by
1. The code length to state each symbol is the negative logarithm of its estimated probability.
Generalising this, if cnt[0] is the number of 0s and cnt[1] be the number of 1s in any bit mask

of size k, then the length of the message to transmit this bit mask is − log2

(
cnt[0]!×cnt[1]!

(k+1)!

)
bits. Figure 7.1(a) gives an example. Notice that both Alice and Bob initialise their counters
to 1. Alice encodes each symbol in the bit mask and transmits it before incrementing the
corresponding counter at her end. Bob decodes the received symbol using the same estimate of
the probability and updates the counters on his side, thus keeping both counters synchronised
to achieve a lossless communication.

Step 4: Transmitting absolute positions in τ2 of the overlapping elements. This
again defines another bit mask, b2. It is easy to see that there are

(
k

cnt[1]

)
possible candidates

for b2, given that Bob already knows b1. Therefore, assuming these candidates are uniformly
distributed, the optimal message length to state b2 takes log

(
k

cnt[1]

)
bits. It is important to note

that b2 ignores the permutation of the overlapping elements as they appear in τ2 (with respect to
τ1) – this is handled in the next step. While the above encoding is optimal, it does not account
for the displacement of overlapping elements in terms of their absolute ranks in the list. It
might arise in some applications that the displacement is among the criteria of comparing two
lists. Hence, a modified adaptive scheme is proposed to account for this displacement. Two
counters are used; the first tracks the number of times the symbols in bit masks b1 and b2

remain the same at a given position (column); the second tracks the number of times they are
different. These counters are used to estimate the probabilities while traversing along b2. For
example, See Figure 7.1(b).

142 CHAPTER 7. ANCILLARY METHODS

b1 0 0 1 1 0 0 1 0 0 0
cnt[0] 1 2 3 3 3 4 5 5 6 7
cnt[1] 1 1 1 2 3 3 3 4 4 4
Prob. 1

2
2
3

1
4

2
5

3
6

4
7

3
8

5
9

6
10

7
11

b1 0 0 1 1 0 0 1 0 0 0
b2 0 0 1 1 1 0 0 0 0 0
cnt[0|0] or cnt[1|1] 1 2 3 4 5 5 6 6 7 8
cnt[0|1] or cnt[1|0] 1 1 1 1 1 2 2 3 3 3
Prob. 1

2
2
3

3
4

4
5

1
6

5
7

2
8

6
9

7
10

8
11

(a) (b)

Figure 7.1: Examples of the adaptive encoding schemes for bit masks described in the main
text.

Step 5: Transmitting the permutation of overlapping elements in τ2 with respect
to τ2. From the previous step, Bob knows what the overlapping elements between the lists
are, but does not know in what order they appear in τ2. To transmit the permutation of these
overlapping elements efficiently, a lexicographic numbering can be mutually agreed between
them (as a part of the code book). Then, transmitting the permutation of these elements
requires simply communicating its lexicographic number over some integer code.

However, to make this transmission efficient a factoradic (or mixed factorial) base numbering
system can be employed (Knuth, 1999b). This system defines a bijection between the symmetric
group Sn to n! possible permutations in that group.

Concretely, let π = {π(i), π(2), · · · , π(n)} be some permutation of n symbols, where π(i) is
the rank of the ith element in the permutation. A factoradic of π defines a sequence f(π) =
(f 1, f 2, · · · , fn)!, where any f i is the number of js greater than i such that π(i) < π(j).
See Figure 7.2 for an example of a lexicographic ordering of the symmetric group S4 labeled
by elements ‘a,b,c,d’, along with its corresponding factoradic sequence of digits. It can be
observed that each factoradic digit f i denotes the number of successive adjacent transpositions
on π required to move each π(i)th element into its correct position. The permutation index (in
decimal) can be computed from a factoradic as

∑n
i=0 f

i × (n− i− 1)!.
The sequence of digits f(π) has several interesting properties. It has been shown that, if

permutations in Sn are distributed uniformly, each factoradic digit f i is also uniformly dis-
tributed in the range 0 ≤ f i ≤ (n − i − 1) (Lehmer, 1960). Also, the factoradic digits f i are
mutually independent of each other because they form projections on independent factors in
the product n× (n− 1)× · · · 1 ≡ n!

Thus, transmitting a permutation of overlapping elements in τ2 involves transmitting its
factoradic digits in sequence. For each factoradic digit f i in the range 0 ≤ i < n (note: fn

is always 0), any decreasing probability distribution on integers in that range can be used.
Specifically a Wallace tree code (Wallace and Patrick, 1993), which defines a code over positive
integers� by associating each integer with the binary code used to uniquely identify a binary
tree. Since this integer code is defined over the infinite space of positive integers, the probability
associated with each code is normalised such that the total probability in the finite range
0 ≤ f i ≤ n− i− 1 adds up to 1.

Step 6: Transmitting non-overlapping elements in τ2. Given that the domain of ele-
ments is known and is of size N , each non-overlapping element can be stated in log2(N−|τ1∪τ2|)
bits. With this the communication process concludes.

�Since factoradic digits start from 0, just add 1 to each digit to map it to the Wallace tree code.

7.1. AN INFORMATION MEASURE FOR COMPARING TOP K LISTS 143

010 a b c d 610 b a c d 1210 c a b d 1810 d a b c
(0 0 0 0)! (1 0 0 0)! (2 0 0 0)! (3 0 0 0)!

110 a b d c 710 b a d c 1310 c a d b 1910 d a c b
(0 0 1 0)! (1 0 1 0)! (2 0 1 0)! (3 0 1 0)!

210 a c b d 810 b c a d 1410 c b a d 2010 d b a c
(0 1 0 0)! (1 1 0 0)! (2 1 0 0)! (3 1 0 0)!

310 a c d b 910 b c d a 1510 c b d a 2110 d b c a
(0 1 1 0)! (1 1 1 0)! (2 1 1 0)! (3 1 1 0)!

410 a d b c 1010 b d a c 1610 c d a b 2210 d c a b
(0 2 0 0)! (1 2 0 0)! (2 2 0 0)! (3 2 0 0)!

510 a d c b 1110 b d c a 1710 c d b a 2310 d c b a
(0 2 1 0)! (1 2 1 0)! (2 2 1 0)! (3 2 1 0)!

Figure 7.2: All possible permutation of elements a,b,c,d, their lexicographical number in base
10, and their corresponding sequence of digits in a factorial number system. The factoradic
system defines a bijection between the permutation and its lexicographic number. For example,
2110 = (3, 1, 1, 0)! = 3× 3! + 1× 2! + 1× 1! + 0.

Case 2: Unknown Domain of Elements

In this situation Alice and Bob do not know the domain of elements being sorted. In the previous
case, Steps 1,2 and 6 depended on knowing the domain and, hence, require modification. The
encodings for Steps 3,4, and 5 are as previously described.

Since this framework relies on lossless transmission and there is no prior knowledge of the
domain of possible labels in each of the two top k lists, the framework requires the lists (along
with its labels) to be explicitly communicated.

To efficiently communicate τ1 and the non-overlapping elements in τ2, consider the union of
the two lists, τ1 ∪ τ2, such that the top k elements define labels in τ1 (in that order) and the
remainder are the labels of non-overlapping elements in the order they appear in τ2.

First, the size of the union |τ1 ∪ τ2| is transmitted using the Wallace tree code defined
over all positive integers. (This modifies previous Step 1.) Then the labels in the τ1 ∪ τ2

can be compressed using, for instance, a standard, dictionary-based lossless data compression
algorithm of Lempel-Ziv-Welch (LZW) (Ziv and Lempel, 1978). The length, |LZW (τ1 ∪ τ2)|,
in bits gives the cost to state the information in τ1 and non-overlapping elements in τ2. (This
modifies previous Steps 2 and 6).

Computational complexity of computing various code length terms. For case 1:
The code lengths involved in steps 1, 2, and 6 take O(1) time to compute. The adaptive code
lengths in Steps 3 and 4 take O(k) time. In Step 5, finding the code length corresponding
to the factoradic of a permutation of n overlapping elements can be achieved in O(n ≤ k)
time (Myrvold and Ruskey, 2001). Computing the code length of each factoradic takes O(1)
time. Thus, the total computational complexity to estimate the information content in the
two lists grows as O(k). For case 2: Step 1 requires O(1) time. Steps 2 and 6 are dealt
together and involves compression of labels in the set {τ1 ∪ τ2}. It can easily be seen that
k ≤ |τ1 ∪ τ2| ≤ 2k. LZW compression implemented naively has a time complexity of O(S|ℵ|),
where S is the number of input symbols and ℵ is the alphabet. For most practical applications,
both S and |ℵ| are O(k) in size. Steps 3, 4, and 5 are the same as in case 1. Thus, the total
time complexity to estimate of the information content for this case grows as O(k2).

144 CHAPTER 7. ANCILLARY METHODS

 0

 5

 10

 15

 20

 25

 30

 35

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

P
e

rm
u

ta
ti
o

n
 c

o
s
t

Permutation number (in lexicographic order)

Weighted L1 cost
L1 cost (Spearman footrule)

num. of transpositions
Information (bits)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 50000 100000 150000 200000 250000 300000 350000 400000

P
e
rm

u
ta

ti
o
n
 c

o
s
t

Permutation number (in lexicographic order)

Weighted L1 cost
L1 cost (Spearman footrule)

num. of transpositions
Information (bits)

(a) (b)

Figure 7.3: Variation of costs over the set of all permutations in the the symmetric groups
(a) S8, and (b) S9. Spearman’s foot rule distance is in Green. Kendall tau distance is in
Blue. Canberra distance is given in Red. Information measure defined in this work is given in
Magenta.

7.1.3 Results and Discussion

Firstly the effect of disarray between permutations as assessed by various popular measures
is quantified. Figure 7.3 gives the cost associated with various measures for the set of all
permutations in symmetric groups (a) S8 and (b) S9. Specifically, the measures used are: (1)
Spearman’s foot rule metric (L1 distance), (2) Canberra distance (weighted L1 measure), (3)
Kendall’s tau distance, measuring the number of adjacent transpositions to sort a permutation,
and (4) the information measure developed in this work. It can be seen that as the information
content to describe a permutation increases, all the other measures vary significantly. It is
important to note that the costs reported by all four of the considered measures are related
to the total number of adjacent transpositions of elements required to sort the permutation.
However, the measure of information accounts for the varying magnitude of disarray (given by
the permutation’s factoradic digits) of each element, instead of combining and summarising
using a simple number. Other measures overlook these individual contributions. For instance,
it can be seen from Figure 7.2 that the permutations adcb = 510 = (0, 2, 1, 0)!, bcda = 910 =
(1, 1, 1, 0)!, bdca = 1010 = (1, 2, 0, 0)!, cadb = 1310 = (2, 0, 1, 0)!, and dabc = 1810 = (3, 0, 0, 0)!)
all require the same number of transpositions (= 3), yet differ in the number of transpositions
for its individual elements.

To examine the performance of various measures on comparing top k lists, first consider
three top 250 movie lists downloaded from goodmovieslist.com, imdb.com and reddit.com.
Figure 7.4 shows the comparisons of (left to right) Goodmovies vs. IMDb, Goodmovies vs.
Reddit, and IMDb vs. Reddit, varying k from 1 to 250 in increments of one. Qualitatively the
lists corresponding to Goodmovies and IMDb are more similar than the other possible pairs. It
can be seen from the figure that both Spearman’s foot rule distance and Kendall tau distance
grow roughly quadratically with the size of k. This mainly results from the contributions to the
respective costs from the set of non-overlapping elements. As this set grows, its contribution to
the distance dominates. However, the growth of information distance� is roughly linear. This

�Note that, for these results and those to follow, the measure of information between lists is computed by
assuming that the total domain of movies is unknown, i.e., following case 2 described in Section 7.1.2.

7.1. AN INFORMATION MEASURE FOR COMPARING TOP K LISTS 145

makes more sense, as information is additive. When the size of the list increases from k to k+1,
the new element that gets added to each of the two lists can in the worst case be independent
of the previous information. This implies that, in the worst case, the total information content
in the list going from k to k+1 gets augmented by the sum of information in the new elements.
Therefore, the quadratic growth of the other measures is questionable.

It is interesting to note that while Spearman’s foot rule and Kendall tau distances monoton-
ically increase, the information distance plotted in the figure has ‘fluctuations’ in the amount
of information measured. These variations occurs when new elements (for increasing values of
k) cause the set of overlapping elements to grow in size. While this increases the distance to
state the permutation of overlapping elements, there is a net saving because the size of the
set of non-overlapping elements (which are transmitted using LZW compression) decreases, in
comparison with the previous values of k.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 50 100 150 200 250

D
is

ta
n

ce

Top k Size

Goodmovies vs. IMDb (Top 250 rankings)

Information distance (bits)
Spearman distance

Kendall tau distance

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 50 100 150 200 250

D
is

ta
n

ce

Top k Size

Goodmovies vs. Reddit (Top 250 rankings)

Information distance (bits)
Spearman distance

Kendall tau distance

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 50 100 150 200 250

D
is

ta
n

ce

Top k Size

IMDb vs. Reddit (Top 250 rankings)

Information distance (bits)
Spearman distance

Kendall tau distance

Figure 7.4: Comparison of Information distance, Spearman’s distance, Kendall’s tau distance
on movie rankings from goodmovieslist.com, imdb.com and reddit.com

 1000

 3000

 5000

 7000

 9000

 11000

 10 20 30 40 50 60 70 80 90 100

D
is

ta
n

ce

Top k Size

Information Distance (nits)

google vs. yahoo
ask vs. google
ask vs. yahoo

 0

 2000

 4000

 6000

 8000

 10000

 12000

 10 20 30 40 50 60 70 80 90 100

D
is

ta
n

ce

Top k Size

Spearman’s footrule Distance

google vs. yahoo
ask vs. google
ask vs. yahoo

 0

 2000

 4000

 6000

 8000

 10000

 12000

 10 20 30 40 50 60 70 80 90 100

D
is

ta
n

ce

Top k Size

Kendall Distance

google vs. yahoo
ask vs. google
ask vs. yahoo

Figure 7.5: Comparison of Information distance, Spearman’s distance, and Kendall’s tau dis-
tance on search results of Google, Yahoo and Ask. The reported values are averaged over 250
top-trending search terms comparing pairs of ranked lists for values of k = {10, 25, 75, 100}

Further, to undertake this comparison on a larger scale, the search results of three popular
web search engines are compared: Google, Yahoo and Ask. This is achieved by selecting 250
top trending search and news terms reported by Google Trends and Yahoo text Analytics for
the regions of Australia, US, India, Canada, UK, Singapore and Germany. Figure 7.5 plots the
average (mean) distance over the 250 queries computing using Information, Spearman’s foot rule
and Kendall tau measures. In this experiment, k is varied more coarsely as 10, 25, 50, 75, and
100. In this figure the same growth trends from before emerges, linear growth for information
distance and quadratic growth for Spearman’s and Kendall’s distance. For k > 50, the difference
between the average distances grows drastically for Spearman’s and Kendall’s distances, while
the same using information distance does not. This suggests a major shortcoming of these
measures compared to the measure based on information.

146 CHAPTER 7. ANCILLARY METHODS

7.2 Sufficient Statistics for Least-Squares Superposition

of Vector Sets

7.2.1 Introduction

As seen earlier in Chapters 4-6, the optimal superposition through orthogonal transformation of
vector sets is at the core of various methods used in this thesis. Indeed the use of superpositions
is widespread in structural biology and bioinformatics (Lesk, 2001b; Eidhammer et al., 2004).
This pervasive use is mainly due to its ability to reveal information about similarities and
differences between protein substructures.

Recall that the orthogonal transformation involves finding the best rigid-body rotation and
translation of two vector sets with one-to-one correspondence. Section 2.2.3 introduced an
almost universally used criterion to define the best superposition between corresponding vector
sets. It involves minimising the sum-of-squares error over the entire search space of possible
rotations and translations, resulting in a quantitative measure, root mean square deviation (or
RMSD), after best superposition.

Given the importance of this routine, several approaches have been proposed to address
this problem over the years (Kabsch, 1976, 1978; McLachlan, 1982; KenKnight, 1984; Mackay,
1984; Lesk, 1986; Daimond, 1988; Kearsley, 1989; Cohen, 1997; Coutsias et al., 2004; Koehl,
2001). Among the popular methods to solve this problem is the method of Kabsch (Kabsch,
1978), which solves this problem using Lagrange multipliers that constrain the search to pure
rotations (and avoid improper ones, like rotoinversions).

As indicated in Section 2.2.3, an equivalent and more elegant approach to solving the same
problem was proposed by Kearsley (Kearsley, 1989) using quaternion algebra (Hamilton and
Hamilton, 1866). Quaternions are generalisations of complex numbers with direct applications
to transformations in three dimensional space. Specifically, the space group corresponding to
unit quaternions is equivalent to the group of all possible pure rotations in three dimensions
(3D) defined about an arbitrary origin. That is, any 3D pure rotation by an angle θ about
some normalised axis n̂ passing through the origin can be represented using a unit quaternion as
follows:

[
cos
(
θ
2

)
, n̂ sin

(
θ
2

)]
. Among the key advantages of using Kearsley’s quaternion method

to solve the least-squares superposition problem are: (1) the problem can be solved analyti-
cally in quaternion parameters, and (2) the method avoids problems with singularities (and
rotoinversions) that can result from using Kabsch’s approach, where these oddities are handled
explicitly after the solution is found (Kearsley, 1989; Coutsias et al., 2004). In general, the
least-squares superposition involves a computational effort that asymptotically grows linearly
with the number of corresponding points being superimposed.

Least-squares superpositions are used extensively in the structural alignment problem, and
in this thesis. As described in Section 6.2.1, many popular methods build an alignment between
structures using fragment-pair assembly (Lesk, 1986; Shindyalov and Bourne, 1998; Ye and
Godzik, 2003; Shatsky et al., 2004; Konagurthu et al., 2006; Shatsky et al., 2002; Vriend and
Sander, 1991; Lackner et al., 2000; Kolodny et al., 2005). In fact, the MMLigner algorithm
defined this thesis (see Chapter 6) also employs a fragment-pair assembly approach to generate
an effective seed alignments (see Section 6.3.2). The general strategy involves finding aligned
(contiguous) fragment-pairs that are maximally extended, one residue-residue correspondence
at a time, starting from some minimum fragment size, until the fragment-pairs superpose within
some specified threshold of RMSD. This results in a library of well-fitting fragment pairs, whose

7.2. SUFFICIENT STATISTICS FOR LEAST-SQUARES SUPERPOSITION 147

computational effort grows as a cubic in the length of the structures being aligned.§ Further, by
computing the joint superpositions of these well-fitting maximal fragment pairs, a structural
alignment can be assembled by gathering fragment-pairs that superpose consistently. This
involves repeated concatenation of vector sets supporting the fragment-pairs and superposition
of those fragment-pairs in the library. Such superpositions are traditionally recomputed from
scratch (even though the previous superpositions provide a wealth of information about the joint
superpositions). It can be seen that the number of joint superpositions grows quadratically in
the size of the fragment-pair library, where each joint superposition of two fragment-pairs taking
a linear effort in the size of the concatenated vector sets.

Generating joint superpositions from scratch imposes a significant computational demand
when performing a large number of superpositions, as required for computing pairwise struc-
tural alignments. One can anticipate that the amount of time spent in superposing fragments
becomes computationally impractical when aligning multiple protein structures simultaneously,
where the multiple structural alignment is commonly built using all-vs-all pairwise structural
alignments, each of which makes a very large number of calls to the superposition routine.

In this section, the least-squares superposition problem is examined and a set of statistics
that are sufficient to compute the optimal superposition parameters (RMSD of best superposi-
tion, and its corresponding rotation and translation) are derived, with mathematical guarantee
of their optimality under the least-squares measure. These sufficient statistics (Hogg and Craig,
1994) are additive. Thus, they can be used to compute new superpositions in constant time, by
relying purely on updating the statistics of the partial superpositions. Constant time update
to compute the optimal joint superpositions results in a drastic speed up, when compared to
the time it takes to recompute the joint superposition from scratch (by treating it as a new
instance of the superposition problem).

The rest of this section is arranged as follows: Section 7.2.2 provides the basic background
of the least-squares superposition problem using the widely-used least-squares criterion. Sec-
tion 7.2.3 introduces the statistical aspects of sufficient statistics, and derives the full set of
sufficient statistics for the optimal least-squares superposition problem. Section 7.2.4 provides
the update rules to compute superpositions using the sufficient statistics of superpositions of
component vector sets, under addition and symmetric difference operations. Section 7.2.5 de-
scribes an approach to speed up the diagonalisation step used in the Kearsley approach. Finally,
Section 7.2.6 benchmarks the performance gain derived from using sufficient statistics.

7.2.2 Summary of Least-Squares Superposition

Let U = {~u1, · · · , ~un} and V = {~v1, · · · , ~vn} denote two 3D vector sets with one-to-one corre-
spondence. Let the (x, y, z) components of each ~ui be represented here as (~ui(x), ~ui(y), ~ui(z))
(a similar representation holds for ~vi or any other vector). The least-squares superposition
problem is a constrained optimisation problem that involves finding the best rotation (matrix)
R and translation (vector) ~t with the optimality criterion defined as in Equation 2.1:

ξ = min
Ne∑
i=1

‖R~ui + ~t− ~vi‖2

where ‖~x‖ is the L2-norm of the vector ~x, R is a 3×3 pure rotation matrix, and ~t is a translation
vector.

§O(N2) number of superpositions, each taking O(N) superposition effort, where N is the number of residues
in the structures being aligned.

148 CHAPTER 7. ANCILLARY METHODS

Under this least-squares criterion, the translation with respect to the optimal superposition
is independent of rotation. This can be easily seen by differentiating ξ with respect to ~t and
evaluating it at its extremum:

∂ξ

∂~t
=

∂

∂~t

Ne∑
i=1

‖R~ui + ~t− ~vi‖2 = 2

Ne∑
i=1

(
∂(R~ui + ~t− ~vi)

∂~t
(R~ui + ~t− ~vi)

)
= 0

=⇒
Ne∑
i=1

(
R~ui + ~t− ~vi

)
= 0 =⇒ R

Ne∑
i=1

~ui +Ne~t−
Ne∑
i=1

~vi = 0

=⇒ ~t =
1

Ne

Ne∑
i=1

~vi︸ ︷︷ ︸
V centre-of-mass

−R 1

Ne

Ne∑
i=1

~ui︸ ︷︷ ︸
U centre-of-mass

= Centroid(V)−Centroid(U)

It follows that moving each of the vector sets to an origin at its centroid, about which the
rotation is defined, gives us a modified (but equivalent) objective which is independent of the
translation ~t:

ξ = min
n∑
i=1

|R~u′i − ~v′i|2

where, ~ui
′ = ~ui −

∑n
i=1 ~ui
n

and ~vi
′ = ~vi −

∑n
i=1 ~vi
n

.
As seen in Section 2.2.3, Kearsley (1989) proposed an elegant method that removes the non-

linear aspect of this problem by transforming it to an eigenvalue problem of the form Q~q = λ~q,
where Q is a 4× 4 square symmetric matrix.


∑

(x2
m + y2

m + z2
m)

∑
(ypzm − ymzp)

∑
(xmzp − xpzm)

∑
(xpym − xmyp)∑

(ypzm − ymzp)
∑

(x2
m + y2

p + z2
p)

∑
(xmym − xpyp)

∑
(xmzm − xpzp)∑

(xmzp − xpzm)
∑

(xmym − xpyp)
∑

(x2
p + y2

m + z2
p)

∑
(ymzm − ypzp)∑

(xpym − xmyp)
∑

(xmzm − xpzp)
∑

(ymzm − ypzp)
∑

(x2
p + y2

p + z2
m)

 (7.1)

~q = (q1, q2, q3, q4)T =
(
cos
(
θ
2

)
, n̂(x) sin

(
θ
2

)
, n̂(y) sin

(
θ
2

)
, n̂(z) sin

(
θ
2

))T
are the (unknown or

to be solved) quaternion components associated with some rotation θ about a normalised axis
n̂, and λ is an (unknown) eigenvalue. In Equation 7.1, the notation xm is used to denote
the component-wise difference ~v′i(x) − ~u′i(x) (and similarly ym and zm) and xp to denote the
component-wise sum ~v′i(x) + ~u′i(x) (similarly yp and zp). From this point onwards, the term
quaternion matrix is used to indicate the 4 × 4 square symmetric matrix in Equation 7.1 and
denote it as Q.

Diagonalising this matrix yields four eigenvalues and (corresponding) eigenvectors. The
eigenvector corresponding to the smallest eigenvalue, λmin, corresponds to the rotation produc-

ing the least-squares error, and the RMSD is computed as
√

λmin

n

Time complexity: The computational effort that takes to solve the rigid-body superposition
problem using Kearsley’s quaternion approach (or equivalently Kabsch’s approach) grows lin-
early with the number of vectors being superimposed. In Kearsley’s approach this is dominated
by the computation of the Q where each of 10 distinct terms in the matrix requires O(n) effort.
The diagonalisation of Q is independent of n and shows a rapid convergence with numerical
methods such as Jacobi’s diagonalisation algorithm (Jacobi, 1846).

7.2. SUFFICIENT STATISTICS FOR LEAST-SQUARES SUPERPOSITION 149

7.2.3 Sufficient Statistics

The rigid-body superposition problem is a geometric instance of the general regression problem
using total least-squares, where a regression line is determined that minimises the sum of the
squared errors of the observed data with respect to it.

It is widely known that solving the regression problem produces error terms that are nor-
mally distributed as N (0, σ), where the mean µ is 0 and σ is the standard deviation which
is minimised by the problem. In fact, the least squares estimator of σ is also its maximum
likelihood estimator.

More formally, consider the standard normal distribution of some random variable x:

N (x|µ, σ) =
1√
2πσ

exp

[
−(x− µ)2

2σ2

]
This normal density can be reparameterised into a general form denoting the family of expo-
nential distributions:

f(x|~η) = h(x)g(~η) exp(~ηT ~U(x))

where h(x) = 1√
π
, g(η2) =

√
−η2 exp

(
η2

1

4η2

)
, ~ηT = (µ

σ2 ,− 1
2σ2), ~UT (x) = (x, x2).

This transformation can be used to show certain important properties that allows efficient
computation of the maximum likelihood estimators of µ and σ.

Considering a sample set of observations that are normally distributed X = {x1, x2, · · · , xn}.
The likelihood for these samples is given by:

f(X|~η) =

(
n∏
i=1

h(xi)

)
(g(~η))n exp(~ηT

n∑
i=1

~U(xi))

Taking natural logarithms on both sides gives us the log likelihood:

log(f(X|~η)) = κ+ n log (g(~η)) + ~ηT
n∑
i=1

~U(xi)

where κ =
∑n

i=1 log(h(xi)) is a term independent of ~η.
To find the maximum likelihood estimators η̂, take the gradient with respect to ~η and set

to 0. This results in:

n∇η̂ [log (g(η̂))] +
n∑
i=1

~U(xi) = 0

=⇒ −∇η̂ [log (g(η̂))] =
1

n

n∑
i=1

~U(xi)

=
−1

g(η̂)
∇η̂g(η̂) =

1

n

n∑
i=1

~U(xi)

Notice that the maximum likelihood estimate η̂ depends on the statistic
∑n

i=1
~U(xi) rather than

on the individual data. This suggests that to obtain the maximum likelihood estimate, the data
is not needed explicitly as it can be derived from that statistic. This sufficiency to derive the

150 CHAPTER 7. ANCILLARY METHODS

maximum likelihood estimator without explicit consideration of data makes
∑n

i=1
~U(xi) a suf-

ficient statistic for the exponential family of functions. As seen earlier for normal distribution,
~U(xi) = (xi, x

2
i) gives the sufficient statistics of

∑n
i=1 xi and

∑n
i=1 x

2
i (Hogg and Craig, 1994).

Sufficient statistics of least-squares superposition
For the least-square superposition, each x, y, and z component of the error vector ξi = R~ui

′−~vi′,
is assumed to be normally distributed: i.e., ξi(x) ∼ N (µ = 0, σ), ξi(y) ∼ N (µ = 0, σ), and
ξi(z) ∼ N (µ = 0, σ). The sufficient statistics are now derived for σ of the ξi(x), ξi(y), ξi(z)
terms, which is equivalent to RMSD√

3
after least-squares superposition. The likelihood of the

observed normally distributed errors after superposition, E = {ξ1(x), ξ1(y), ξ1(z) . . . , ξn(x),
xin(y), ξn(z)}, can be written as:

f(E|σ) =
3n∏
i=1

(2πσ2)−
1
2 exp

(
− 1

2σ2
‖R~u′i − ~v′i‖2

)

= (2πσ2)−
3n
2 exp

(
− 1

2σ2

n∑
i=1

‖R~u′i − ~v′i‖2

)
(7.2)

Examining the decomposition of:

‖ξi‖2 = ‖R~u′i − ~v′i‖2 = ‖~u′i‖2 + ‖~v′i‖2 − 2~v′i
T
R~u′i (7.3)

From Equation 7.1, the matrix Q is made up of terms of the form:

Am = v′i(A)− u′i(A) and Ap = v′i(A) + u′i(A)

where each A and B take the values {x, y, z} denoting vector components. Rewriting:

v′i(A) =
Ap + Am

2
and u′i(A) =

Ap − Am
2

The first two terms on the right hand side of Equation 7.3 can be expanded as follows:

‖~u′i‖2 + ‖~v′i‖2 = (u′i(x)2 + u′i(y)2 + u′i(z)2) + (v′i(x)2 + v′i(y)2 + v′i(z)2)

=
1

2
(x2

m + x2
p + y2

m + y2
p + z2

m + z2
p)

=
1

2

∑
A∈{x,y,z}

A2
m +

1

2

∑
A∈{x,y,z}

A2
p (7.4)

The last term on the right hand side of Equation 7.3 can be expanded as ~v′i
T
R~u′i = ~v′i

T
[r1 r2 r3]~u′i

where r1, r2, r3 are column vectors of the 3× 3 rotation matrix R. Therefore:

~v′i
T
R~u′i = (~v′i.r1)u′i(x) + (~v′i.r2)u′i(y) + (~v′i.r3)u′i(z) (7.5)

7.2. SUFFICIENT STATISTICS FOR LEAST-SQUARES SUPERPOSITION 151

Take the first term on the right hand side of Equation 7.5. This can be expanded as:

(~v′i.r1)u′i(x) = r11v
′
i(x)u′i(x) + r12v

′
i(y)u′i(x) + r13v

′
i(z)u′i(x)

=
r11

4
(xp + xm)(xp − xm) +

r12

4
(yp + ym)(xp − xm) +

r13

4
(zp + zm)(xp − xm)

=
r11

4
(x2

p − x2
m) +

r12

4
(ypxp − ypxm + ymxp − ymxm)

+
r13

4
(zpxp − zpxm + zmxp − zmxm)

where r11, r12, r13 are the terms in the ~r1 column vector in R. More generally:

(~v′i.r1)u′i(x) = c1A
2
p + c2A

2
m + c3ApBp + c4AmBm + c5AmBp (7.6)

where ck are constants in terms of components of ~r1.
Similarly, (~v′i.r2)u′i(y) and (~v′i.r3)u′i(z) can be expanded as above and will have the same

form as (7.6) but with different constants. Therefore, combining Equations 7.4-7.5, the equation
7.3 can be written as:

‖ξi‖2 = ζ1

∑
A

A2
p + ζ2

∑
A

A2
m + ζ3

∑
∀A 6=B

ApBp + ζ4

∑
∀A 6=B

AmBm + ζ5

∑
∀A 6=B

AmBp

where ζk are constants. Hence, the likelihood function can be written as

f (E = {ξ1(x), ξ1(y), ξ1(z) . . . , ξn(x), ξn(y), ξn(z)}|σ) = (2πσ2)−
3n
2 exp

(
− 1

2σ2
U

)
(7.7)

where

U =
n∑
i=1

(
ζ1

∑
A

A2
p + ζ2

∑
A

A2
m + ζ3

∑
∀A 6=B

ApBp + ζ4

∑
∀A 6=B

AmBm + ζ5

∑
∀A 6=B

AmBp

)

and A,B ∈ {x, y, z}
Using Equation 7.7, the negative log-likelihood is given as:

L(E = {ξ1(x), ξ1(y), ξ1(z) . . . , ξn(x), ξn(y), ξn(z)}|σ) =
3n

2
log(2π) + 3n log σ +

1

2σ2
U (7.8)

The maximum likelihood estimate σ̂ can be determined by minimising Equation 7.8 and eval-
uating the corresponding σ. That is:

∂L
∂σ

= 0 =⇒ σ̂2 =
U

3n
(7.9)

U involves statistics that do not take into account the data explicitly, and are sufficient to
estimate σ (or RMSD). Therefore, the set of sufficient statistics for the least-squares superpo-
sition problem can be defined as:

Ψ =

{
n∑
i=1

Am,
n∑
i=1

Ap,
n∑
i=1

AmBm,
n∑
i=1

AmBp,
n∑
i=1

ApBp

}
(7.10)

152 CHAPTER 7. ANCILLARY METHODS

where A and B take the values {x, y, z}, Am = ~vi
′(A)− ~ui′(A) is the component-wise difference

(similarly Bm), and Ap = ~vi
′(A)+ ~ui

′(A) is the component-wise sum (similarly Bp). Altogether,
the set Ψ consists of 24 distinct statistics.

In addition, using the same notation, the statistics required to compute the centroid are of
the form

∑n
i=1

~u′i(A) and
∑n

i=1
~v′i(A), and these are equivalent to

∑
∀AAm and

∑
∀AAp.

7.2.4 Updating Sufficient Statistics

Addition Operation on Vector Sets Using Sufficient Statistics

Consider two pairs of corresponding vector sets: Q ↔ R containing n1 correspondences and
S ↔ T containing n2 correspondences. Let U be defined as a combination of vectors Q and
S and similarly V as a combination of R and T . Let Ψ1 denote the sufficient statistics of
superposing the first pair and Ψ2 denote the same for the second pair. Define these as:

Ψ1 =

{
n1∑
i=1

Cm,

n1∑
i=1

Cp,

n1∑
i=1

CmDm,

n1∑
i=1

CmDp,

n1∑
i=1

CpDp

}
(7.11)

Ψ2 =

{
n2∑
i=1

Em,

n2∑
i=1

Ep,

n2∑
i=1

EmFm,

n2∑
i=1

EmFp,

n2∑
i=1

EpFp

}
(7.12)

Where C,D,E and F are all {x, y, z} denoting the components of the corresponding vectors
in the vector sets under consideration. Consistent with the previous notation (see Equation
7.10), Cp and Cm (similarly Dp and Dm) are the component-wise sums and differences between
corresponding vectors in Q and R. The same definitions hold for Em (and Ep) and Fm (and
Fp), with respect to corresponding vectors in S and T .

The aim is to use Ψ1 and Ψ2 to compute a new set of sufficient statistics Ψ (defined in
Equation 7.10) for the superposition of vector sets U = Q + S with V = R + T . Below, the
construction of the new sufficient statistics is derived.

The statistics involved in computing the new centroids of the sets U and V ,
∑n=n1+n2

i=1 ~u(A)
and

∑n=n1+n2

i=1 ~v(A), can be trivially updated using the statistics
∑n1

i=1 ~q(C),
∑n1

i=1 ~r(D),
∑n2

i=1 ~s(E),
and

∑n2

i=1
~t(F).

To compute the remaining statistics in Ψ, define vectors:

~α1 = Centroid(U)−Centroid(Q) ~β1 = Centroid(V)−Centroid(R)

~α2 = Centroid(U)−Centroid(S) ~β2 = Centroid(V)−Centroid(T).

These vectors define the corrections that are required to be made to the previous centroids to
recover the updated ones.

7.2. SUFFICIENT STATISTICS FOR LEAST-SQUARES SUPERPOSITION 153

Lemma 4.
∑n=n1+n2

i=1 Am =
[∑n1

i=1 Cm + n1∆C
m

]
+
[∑n2

i=1Em + n2∆E
m

]
, where ∆C

m = ~β1(C)−
~α1(C) and ∆E

m = ~β2(E)− ~α2(E) and A = C = E ∈ {x, y, z}

Proof.

n=n1+n2∑
i=1

Am =

[
n1∑
i=1

[
(~r′(C) + ~β1(C))− (~q′(C) + ~α1(C))

]]

+

[
n2∑
i=1

[
(~t′(E) + ~β2(E))− (~s′(E) + ~α2(E))

]]

=

[
n1∑
i=1

(~r′(C)− ~q′(C)) + (~β1(C)− ~α1(C))

]

+

[
n2∑
i=1

(~t′(C)− ~s′(C)) + (~β2(E)− ~α2(E))

]

=

[
n1∑
i=1

Cm +

n1∑
i=1

∆C
m

]
+

[
n2∑
i=1

Em +

n2∑
i=1

∆E
m

]

=

[
n1∑
i=1

Cm + n1∆C
m

]
+

[
n2∑
i=1

Em + n2∆E
m

]

Corollary 1.
∑n

i=1Ap =
[∑n1

i=1Cp + n1∆C
p

]
+
[∑n2

i=1Ep + n2∆E
p

]

Lemma 5.

n=n1+n2∑
i=1

AmBm =

[
n1∑
i=1

CmDm + ∆C
m

n1∑
i=1

Dm + ∆D
m

n1∑
i=1

Cm + n1∆C
m∆D

m

]

+

[
n2∑
i=1

EmFm + ∆E
m

n2∑
i=1

Fm + ∆F
m

n2∑
i=1

Em + n2∆E
m∆F

m

]

where ∆C
m = ~β1(C)− ~α1(C), ∆D

m = ~β1(D)− ~α1(D), ∆E
m = ~β2(E)− ~α2(E), and ∆F

m = ~β2(F)−
~α2(F) A = C = E ∈ {x, y, z} and B = D = F ∈ {x, y, z}

Proof.

Updated(

n1∑
i=1

CmDm) =

n1∑
i=1

[
(~r′(C) + ~β1(C))− (~q′(C) + ~α1(C))

]
[
(~r′(D) + ~β1(D))− (~q′(B) + ~α1(D))

]

154 CHAPTER 7. ANCILLARY METHODS

=

n1∑
i=1

[(~r′(C)~r′(D)− ~q′(C)~q′(D)− ~r′(C)~q′(D) + ~q′(C)~r′(D)]

+

n1∑
i=1

[
(~β1(C)~r′(D)− ~α1(C)~r′(D)− ~β1(C)~q′(D) + ~α1(C)~q′(D)

]
+

n1∑
i=1

[
(~r′(C) ~β1(D)− ~r′(C) ~α1(D)− ~q′(C) ~β1(D) + ~q′(C) ~α1(D)

]
+

n1∑
i=1

[
(~β1(C) ~β1(D)− ~α1(C) ~β1(D)− ~β1(C) ~α1(D) + ~α1(C) ~α1(D)

]
=

n1∑
i=1

CmDm +

n1∑
i=1

∆C
mDm +

n1∑
i=1

∆D
mCm +

n1∑
i=1

∆C
m∆D

m

=

n1∑
i=1

CmDm + ∆C
m

n1∑
i=1

Dm + ∆D
m

n1∑
i=1

Cm + n1∆C
m∆D

m

Similarly:

Updated(

n2∑
i=1

EmFm) =

n2∑
i=1

EmFm + ∆E
m

n2∑
i=1

Fm + ∆F
m

n2∑
i=1

Em + n2∆E
m∆F

m

Adding the two updated statistics, the lemma follows.

Corollary 2.

n=n1+n2∑
i=1

A2
m =

n=n1+n2∑
i=1

AmAm =

[
n1∑
i=1

CmCm + 2∆C
m

n1∑
i=1

Cm + n1

(
∆C
m

)2

]

+

[
n2∑
i=1

EmEm + 2∆E
m

n2∑
i=1

Em + n2

(
∆E
m

)2

]

Corollary 3.

n=n1+n2∑
i=1

ApBp =

[
n1∑
i=1

CpDp + ∆C
p

n1∑
i=1

Dp + ∆D
p

n1∑
i=1

Cp + n1∆C
p ∆D

p

]

+

[
n2∑
i=1

EpFp + ∆E
p

n2∑
i=1

Fp + ∆F
p

n2∑
i=1

Ep + n2∆E
p ∆F

p

]

Corollary 4.

n=n1+n2∑
i=1

A2
p =

n=n1+n2∑
i=1

ApAp =

[
n1∑
i=1

CpCp + 2∆C
p

n1∑
i=1

Cp + n1

(
∆C
p

)2

]

+

[
n2∑
i=1

EpEp + 2∆E
p

n2∑
i=1

Ep + n2

(
∆E
p

)2

]

7.2. SUFFICIENT STATISTICS FOR LEAST-SQUARES SUPERPOSITION 155

Lemma 6.

n=n1+n2∑
i=1

AmBp =

[
n1∑
i=1

CmDp + ∆C
m

n1∑
i=1

Dp + ∆D
p

n1∑
i=1

Cm + n1∆C
m∆D

p

]

+

[
n2∑
i=1

EmFp + ∆E
m

n2∑
i=1

Fp + ∆F
p

n2∑
i=1

Em + n2∆E
m∆F

p

]

where ∆C
m = ~β1(C)− ~α1(C), ∆D

m = ~β1(D)− ~α1(D), ∆E
m = ~β2(E)− ~α2(E), and ∆F

m = ~β2(F)−
~α2(F) A = C = E ∈ {x, y, z} and B = D = F ∈ {x, y, z}

Proof.

Updated(

n1∑
i=1

CmDp) =

n1∑
i=1

[
(~r′(C) + ~β1(C))− (~q′(C) + ~α1(C))

]
[
(~r′(D) + ~β1(D)) + (~q′(B) + ~α1(D))

]

=

n1∑
i=1

[(~r′(C)~r′(D)− ~q′(C)~q′(D) + ~r′(C)~q′(D)− ~q′(C)~r′(D)]

+

n1∑
i=1

[
(~β1(C)~r′(D)− ~α1(C)~r′(D) + ~β1(C)~q′(D)− ~α1(C)~q′(D)

]
+

n1∑
i=1

[
(~r′(C) ~β1(D)− ~r′(C) ~α1(D) + ~q′(C) ~β1(D)− ~q′(C) ~α1(D)

]
+

n1∑
i=1

[
(~β1(C) ~β1(D)− ~α1(C) ~β1(D) + ~β1(C) ~α1(D)− ~α1(C) ~α1(D)

]
=

n1∑
i=1

CmDp +

n1∑
i=1

∆C
mDp +

n1∑
i=1

∆D
mCp +

n1∑
i=1

∆C
m∆D

p

=

n1∑
i=1

CmDp + ∆C
p

n1∑
i=1

Dm + ∆D
m

n1∑
i=1

Cp + n1∆C
m∆D

p

Similarly:

Updated(

n2∑
i=1

EmFp) =

n2∑
i=1

EmFp + ∆E
m

n2∑
i=1

Fp + ∆F
p

n2∑
i=1

Em + n2∆E
m∆F

p

Adding the two updated statistics, the lemma follows.

Deletion Operation of Vector Sets Using Sufficient Statistics

Consider the case where a superposition needs to be found under a deletion operation. That is,
let Q ↔ R and S ↔ T denote two pairs of vector sets that are in correspondence. Let S ⊂ Q
and T ⊂ R. Under this assumption, let us define U = Q− S and V = R− T .

156 CHAPTER 7. ANCILLARY METHODS

Using the same notations as in the previous section, it is straightforward to see that the
sufficient statistics Ψ of the superposition of U with V can be derived from the sufficient
statistics Ψ1 (of Q ↔ R) and Ψ2 (of S ↔ T). The update rules defining the deletion operation
are similar to the ones described above.

7.2.5 Computing the RMSD from Updated Sufficient Statistics

It is easy to see that Kearsley’s 4 × 4 quaternion matrix Q given in Equation 7.1 can be
constructed using the updated sufficient statistics Ψ derived from Ψ1 and Ψ2. The matrix Q
contains 10 distinct elements (given that Q is square symmetric) which can be computed in
constant time.

In practice, Q is diagonalised using the Jacobi’s iterative rotation approach, which annihi-
lates an off-diagonal element with each rotation. This approach has a fast convergence, and
requires no additional optimisation. However, in many cases the updated superposition shows
only a marginal change from the previous one. For example, if a current superposition were to
be extended by one pair of residues, the resultant new transformation will often, in practice,
be very close to the previously computed one. This allows the diagonalisation to build on the
previous solution.

Let Q denote the Kearsley’s 4×4 matrix corresponding to the superposition of corresponding
vector sets U and V . From the eigen decomposition theorem, Q = SΛS−1, where S is the matrix
of eigenvectors and Λ is the diagonal matrix of eigenvalues. Also note that Q is a positive
semidefinite matrix with the property QTQ = QQT . This implies that all the eigenvectors are
orthogonal to each other. This further simplifies the decomposition to Q = SΛST . Also, since
S is an orthogonal matrix, Q = SΛST =⇒ Λ = STQS.

Now, assume that the corresponding vector sets are augmented from U and V to U ′ and
V ′, resulting in an updated Kearsley’s matrix Q′. The aim is to diagonalise this matrix into
S ′Λ′S ′T . Instead of starting the Jacobi’s iterative process from scratch, use the previously
computed eigenvectors (before the vector sets were augmented), S, and compute Λ̃ as STQ′S.
Notice that if the augmentation does not include drastic changes, then Λ̃ is nearly diagonal
(that is, Λ̃ ≈ Λ′), thus requiring very few iterations to fully diagonalise it. This provides a
further optimisation to the diagonalisation step under update operations on vector sets.

7.2.6 Results and Discussion

Consistency of Superpositions Using Sufficient Statistics

To validate the consistency of superpositions generated using sufficient statistics (under both
addition and deletion operations discussed in Section 7.2.4) the following benchmarking is
undertaken. 8992 ASTRAL SCOP (Murzin et al., 1995; Chandonia et al., 2004) domains were
used as the source structures from which superposable fragments were randomly sampled. The
general procedure of sampling is as follows. From the list of source structures, randomly choose
any structure. Within this structure choose 2 random fragments of lengths l1 and l2, where
each fragment has between 10 and 40 residues. These chosen fragments form the sets Q and
S. Yet another structure is again chosen randomly from the source list, and two fragments are
randomly extracted from it with exactly the same length, l1 and l2. These form the sets R and
T . Assuming one-to-one correspondence between Q ↔ R the sufficient statistics Ψ1 of their
least-squares superposition are computed. Similarly, the sufficient statistics Ψ2 are computed
for the least-squares superposition between S ↔ T . Define U = Q + S and V = R + T . The
following is computed by iterating this random sampling 100 million times:

7.2. SUFFICIENT STATISTICS FOR LEAST-SQUARES SUPERPOSITION 157

0 2 4 6 8 10

x 10
6

0

100

200

300

400

500

600

700

Joint superpositions (avg. size = 10) versus Time
C

P
U

 T
im

e
 (

in
 s

e
c

o
n

d
s

)

Number of joint superpositions
0 2 4 6 8 10

x 10
6

0

100

200

300

400

500

600

700

Joint superpositions (avg. size = 20) versus Time

C
P

U
 T

im
e

 (
in

 s
e

c
o

n
d

s
)

Number of joint superpositions
0 2 4 6 8 10

x 10
6

0

100

200

300

400

500

600

700

Joint superpositions (avg. size = 40) versus Time

C
P

U
 T

im
e

 (
in

 s
e

c
o

n
d

s
)

Number of joint superpositions

(a) (b) (c)

Figure 7.6: The CPU times (in seconds) performing joint superpositions from scratch (Blue
line) compared against the same using sufficient statistics (Green line) over 10 million random
fragment data sets derived from ASTRAL SCOP domains. The three plots vary in the average
superposition size as indicated in the title.

1. the RMSD of superposition of U ↔ V from scratch (using the raw coordinates in the
vector sets). Denote this RMSD as ρ1

2. the RMSD of superposition of U ↔ V , but using the sufficient statistics Ψ1 and Ψ2 of
superpositions of constituent vector sets Q ↔ R, and S ↔ T . Denote this RMSD as ρ2.

We measure the difference between the two RMSD values, ∆ρ = ρ1 − ρ2. Over the 100 million
samples, the mean and standard deviation of ∆ρ was found to be zero to a very high precision
(< 10−17).

The same experiment is repeated to validate superpositions under deletion operation using
sufficient statistics, where, in each iteration, the superposition of vector sets S ↔ T , is com-
puted with S = U \ Q and T = V \ R. This experiment again confirms the same consistency
as observed in the test on addition operation.

Measuring the Performance Gain Using Sufficient Statistics for Superpositions

In Section 7.2.4 it was demonstrated that superpositions under addition and deletion can be
updated in constant time, building on the sufficient statistics of the constituent sets. This
was also validated empirically by the benchmarking above. Now the gain in performance is
measured using this approach by comparing it with superpositions built from scratch.

Figures 7.6(a)-(c) show the runtime plots of three sets of randomly chosen 10 million joint
superpositions carried out from scratch (Blue line) and compared against the same superpo-
sitions updated using sufficient statistics (Green line). Note that these three sets vary in the
(average) size of the joint superpositions being carried out, as indicated in the plot titles.

Note also that, when the joint superpositions are carried out from scratch ignoring the
sufficient statistics, the average size of the superpositions introduces a constant factor to the
run time. This is expected as each superposition is linear in the size of the vector sets being
superposed. Consequently, the slopes of those blue lines across the three plots in Figure 7.6
become steeper with the increase in the superposition size. On the other hand, when the joint
superpositions are updated in constant time, the updates are independent of the superposition
size. This is because, any update involves recomputing only a small (fixed) number of sufficient
statistics. This is clearly reflected in the slopes of the green lines, which remain unchanged
across the three plots in Figure 7.6.

158 CHAPTER 7. ANCILLARY METHODS

Table 7.1: Time taken to perform exhaustive joint superpositions on a library of well-fitting
fragment pairs between two structures from different families.

Protein Family structural pair Number of joint Average size of Time in seconds Time in seconds
wwPDB IDs superpositions superpositions (from scratch) (sufficient stats)

Serine Proteinases 3EST vs. 2PKA 18,486,240 14 419.6 56.0
Calmodulin-like 1NCX vs. 2SAS 67,820,481 18 1618.4 178.2

Serine Proteinases 3EST vs. 2SNV 71,025,321 16 1328.0 187.8
Globins 1HHOA vs. 1HHOB 74,890,441 20 1923.3 194.6

More formally, if |J | is the number of joint superpositions and l is the (average) number of
vectors being superposed, the first method (Blue line in Figure 7.6) grows as O(l|J |). Since
l � |J | there is a linear trend (with a steeper gradient accounting for the multiplier l in the
complexity term). In comparison, the results with sufficient statistics (Green line in Figure 7.6)
grow only as O(|J |), independently of the superposition size.

Using Sufficient Statistics of Superposition in the Setting of Structural Alignments

As discussed in the introduction, a common heuristic employed to compute a structural align-
ment between pairs of structures, involves collecting a library of well-fitting fragments. This
library is refined by jointly superposing pairs from this library, and a final structural alignment
is assembled from these results.

To test the potential performance gain by using sufficient statistics, the time taken to
undertake an exhaustive joint superposition on libraries of well-fitting fragments corresponding
to a small collection of structural pairs is measured. For each pair of structures chosen, the well-
fitting fragments are identified as those that superpose maximally within an RMSD threshold of
2 Å. Where maximal means those fragment pairs that cannot be extended any further without
violating the RMSD threshold.

Table 7.1 shows the run times of joint superpositions performed exhaustively on a small
set of protein structural pairs. As it can be seen from the table, using sufficient statistics for
superpositions results in up to an order of magnitude improvement in the run time to carry these
superpositions exhaustively. Since performing this task without sufficient statistics creates a
computational bottleneck, existing structural alignment programs attempt to drastically restrict
the number of superpositions, often trading off structural alignment quality for speed. Note
that the improvements gained from using sufficient statistics for superpositions will allow these
restrictions to be generously relaxed without any effect on the current run times, but potentially
improving the structural alignment quality.

All of the above experiments were carried out on a standard laptop with 2.2GHz Intelr

CPU and 4GB RAM.

7.3 Conclusions

This chapter presents the two ancillary methods that support this thesis:

1. A new information measure for comparing any two top k lists. By exploring their com-
pressibility, the method provides a statistically rigorous measure of variability between
ranked lists. It provides an objective trade-off between criteria that measure the dis-
similarity between lists, addressing pitfalls in the existing measures. As a future direction
of research, this measure can be used to address the important rank aggregation problem:

7.3. CONCLUSIONS 159

What is the ‘consensus’ top k ranking that combines the top k results from multiple
sources. Notably, this measure is employed in assessing the level of disagreement between
structural alignment scoring functions on ranked lists alignments in Section 4.8.3.

2. Least-squares superpositions of vector sets are central to identify similarities and differ-
ences between spatial objects. A set of sufficient statistics was derived for the least-
squares superposition problem under the least squares criterion. These statistics provide
an efficient way to operate (via addition and deletion of vectors) on previously computed
superpositions. The results in this chapter demonstrate a drastic improvement in the
computational effort required to compute RMSD using sufficient statistics. This speed-
up drives the efficiency of MMLigner in computing seed alignments in Section 6.3.2 and
I-value in computing adaptive superpositions in Section 4.6.

160 CHAPTER 7. ANCILLARY METHODS

Chapter 8

Conclusions and Future Directions

“Essentially, all models are wrong, but some are useful.”

— G. Box (Box and Draper, 1987)

T
his thesis fundamentally re-examines the underpinnings of the protein structural alignment
problem. In doing so, it proposes a fundamental shift in the way protein structural align-

ment quality is measured and useful alignments are identified. This is built on the rigorous
statistical foundation of the Minimum Message Length (MML) principle (Wallace and Free-
man, 1987). This thesis establishes a statistically rigorous criterion, based on MML, for the
distinction between the quality of competing alignments by combining Bayesian statistics with
lossless data compression.

The development of this criterion culminated in the I-value measure of alignment quality.
This measure computes a reliable and objective trade-off between alignment complexity, a
hitherto poorly addressed characteristic of alignments, and fidelity of fit between two protein
structures. This is in stark contrast to the ad hoc combination of coverage and RMSD terms
frequently used by state-of-the-art structural alignment quality measures. The I-value equation
encompasses an objective trade-off between alignment complexity and fidelity of fit as:

I(A, 〈S, T 〉)︸ ︷︷ ︸
I-value

= I(A)︸ ︷︷ ︸
Alignment complexity

+ Inull(S)︸ ︷︷ ︸
Constant over
all alignments

+ I(T |S,A)︸ ︷︷ ︸
Fidelity

Highlighted in the equation are message length terms representing alignment complexity and
structural fidelity. The I-value measure is intuitive: a complex alignment may require a longer
message length term, I(A), but may allow the structures to fit very well, requiring a relatively
shorter message length term, I(T |S,A). This situation is reversed when the alignment is
simpler, requiring a shorter message length term, I(A), but may result in a poorer fit between
the structures yielding a longer message length term, I(T |S,A). Therefore, the best alignment
is the one that minimises the combined two-part message length of I-value.
Supporting this information theoretic measure are the following useful properties:

1. I-value varies according to the posterior probability of the alignment. This provides
a formal trade-off between the coverage, as measured by the complexity of the align-
ment hypothesis (I(A)) and the fidelity of the structures given the proposed alignment
(I(T |S,A)). Unlike previous formulations of structural alignment scoring functions, these

161

162 CHAPTER 8. CONCLUSIONS AND FUTURE DIRECTIONS

terms are not ad hoc approximations of coverage and fidelity. Instead, they rigorously
estimate the Shannon information content of the entire alignment and coordinate data
based on lossless encoding and compression.

2. The difference between the I-values of any two competing alignments, A1 and A2, gives

the log-odds posterior ratio, log
(

Pr(A2|〈S,T 〉)
Pr(A1|〈S,T 〉)

)
. This property makes the comparison and

discrimination between competing alignments statistically robust. The best alignment is
the one that minimises the I-value message length.

3. I-value provides a natural null hypothesis test. If the I-value of an alignment A is worse
(longer) than that of the null model encoding of the structural coordinates, then A must
be rejected. That is, reject A if I(A, 〈S, T 〉) ≥ Inull(〈S, T 〉).

To the best of our knowledge, no other structural alignment scoring function nat-
urally demonstrates these properties.

The accuracy of I-value largely depends on the details of the specific statistical models
of encoding used for each term in the I-value equation (see Equation 5.1). The development
of these encoding models requires a high degree of innovation. To our best efforts, a set of
models and methods were developed to estimate the Shannon information content of the I-value
message length terms in Chapter 4 and significantly improved upon in Chapter 5. Our encoding
models build on the directional distributions of Cα coordinate data developed by Kasarapu and
Allison (2015). All of the assumptions behind these models are open to scrutiny. However,
it is conceivable that better statistical models could be developed beyond what is achieved in
this thesis. Nevertheless, the utility of any proposed improvements to the statistical
models of encoding are best judged, in the MML paradigm, by the improvement
to the lossless two-part message length (for example, as demonstrated in Chapter 5).

This thesis attempts to rigorously evaluate the I-value measure of alignment quality. How-
ever, no accepted gold standard for structural alignments are available to carry
out an objective evaluation of alignment quality measures. In the absence of a gold
standard, various alignment scoring functions are evaluated for their ability to distinguish
between protein domains at varying structural distances, as defined by the SCOP classifica-
tion database (Murzin et al., 1995). These evaluations clearly demonstrate the highly-
consistent performance of the I-value measure in discriminating alignments across
the SCOP hierarchy (see Section 6.4, and Section 4.8). What is also clear from our evalu-
ations is the extent disagreement among structural alignment scoring functions when ranking
structural alignments, as previously observed by the host of comparative studies (Kolodny
et al., 2005; Hasegawa and Holm, 2009; Sippl and Wiederstein, 2008; Slater et al., 2013; Ma
and Wang, 2014).

Furthermore, this thesis develops a method of searching for meaningful structural alignments
using I-value as the optimisation criterion. The resulting algorithm, MMLigner, presented in
Chapter 6, is able to reliably find high-quality alignments for pairs of protein structures. Our
evaluations demonstrate the effectiveness of MMLigner over other popular structural alignment
methods, even simply judging from the combined RMSD and coverage profiles (see Section 6.4).
Importantly, MMLigner is able to consistently identify alternative structural alignments of com-
parable quality. This is a challenging problem when aligning oligomeric proteins and protein
complexes. Chapter 6 presents case studies where such alternative alignments exist for the same
structural pair. It can be seen from these results that MMLigner consistently outperforms
other methods in identifying alternative structural alignments.
This thesis also benefits from two ancillary contributions:

8.1. EXTENSIONS TO THE RESEARCH PRESENTED IN THIS THESIS 163

1. The derivation of sufficient statistics for the least-squares superposition problem. This
results in a mathematically-guaranteed numerical method to rapidly compute joint su-
perpositions of vector sets from superpositions of its constituent subsets. These sufficient
statistics of superposition support addition and symmetric difference operations on pre-
viously superimposed vector subsets. This contribution supports the rapid and exaustive
generation of maximally superposable fragment pairs used to create seed alignments in
(Phase 1 of) MMLigner. This technique is not limited to the domain of protein bioinfor-
matics, but is broadly applicable to areas as diverse as robotics and signal processing.

2. A measure to compare top k elements of any two given rank orderings. The approach
uses the same framework supporting I-value, based on the MML (Wallace and Boulton,
1968) criterion. This information-theoretic measure to compare two top k lists reconciles:
the extent of their non-overlapping elements, the amount of disarray among overlapping
elements and the measurement of their displacement in ranks (positions). This method
is applied to the problem of comparing lists of alignments ranked by respective alignment
scoring functions (see Chapter 4).

8.1 Extensions to the Research Presented in this Thesis

There are several clear avenues for further work and improvement to I-value and MMLigner.

8.1.1 Evaluating the Quality of Predicted Protein Structures

Today, protein structure is routinely determined using experimental methods such as X-ray crys-
tallography (Kendrew et al., 1958; Muirhead and Perutz, 1963), Nuclear Magnetic Resonance
(NMR; Wagner and Wüthrich (1978)) and Cryo-Electron Microscopy (Unwin and Henderson,
1975). However, these methods are relatively expensive compared to the determination of DNA
sequence (França et al., 2002) that can be directly translated into protein sequence. The holy
grail of molecular biology is the accurate computational prediction of protein structures from
sequence.

Every two years the Critical Assessment of protein Structure Prediction (CASP; Moult
et al. (1995)) competition is held to test the state-of-the-art methods for protein structure
prediction. Accurate protein structure alignments are critical to the assessment of entries into
this competition. Using MMLigner and I-value to rank entries to this competition currently
stands as partially completed work which we have been unable to include in this thesis.

8.1.2 Improvements to the Encoding Models

It would be useful to add sequence information to structural information for the models of
encoding when constructing alignments of protein structures. As mentioned in Section 5.1,
rigorous statistical models for protein sequence alignment exist and may be applied in I-value
alongside structural data to improve alignment quality. The addition of sequence to the I-value
computation is a potentially important improvement.

Second, while Cα atoms are the de-facto atom to use when representing amino acid coordi-
nates, they do not provide any information about the orientation of the side chain. Therefore,
it could be useful for extensions of the coordinate encoding models to take into account other
main-chain atoms and the Cβ atom in order to account for side-chain orientation.

164 CHAPTER 8. CONCLUSIONS AND FUTURE DIRECTIONS

Finally, the MMLigner algorithm could be extended to support multiple protein structural
alignment. Alignments of more than two structures reveal more information to a biologist
than does a pairwise alignment. Therefore, it is important to extend I-value and MMLigner to
alignments of multiple protein structures.

8.1.3 Identifying Closely Competing Structural Alignments

The MMLigner algorithm performs a series of slight modifications in the final step and evaluates
each modification using I-value. Recording the k best alignments under the I-value measure
and presenting these as closely competing alternatives, gives biologists a powerful mechanism
to evaluate points of uncertainty in the alignment produced together with a set of nearby
alignments to choose from. Note that this procedure is in addition to the distinct alternate
alignments produced by MMLigner in its current form.

8.1.4 Visualisations of Alignment Quality

The possibility of visualising the landscape of competing alignment hypotheses was touched
upon in Section 6.3.1. This landscape allows users to determine whether the alignment obtained
is unique or if there are many similar ones available providing a visual mechanism for the
improvement mentioned above in Section 8.1.3. Figures 8.1-8.5 show a range of landscapes
produced from simple, closely related proteins, to more distant relationships with multiple
potential alternates. The height of each cell is equivalent to the I-value (lower is better) of
the optimal alignment that “passes though” (an alignment considered as a path travelling from
source to sink; see Section 6.3.1). Note that the visualisations make it easy to see the relative
significance between alternatives (as the heights of valleys), the existence of areas of closely
competing alignments (as valley floors), and the general landscape of alignment quality. The
addition of interactivity to these landscapes (where a user is able to “click” on a particular cell
to examine the alignment passing through it, and the superposition (as shown below) of the
structures given by that alignment) makes for a compelling tool for the analysis of alignments
and the structural relationships between proteins. This landscape visualisation is a natural
successor to the dot-plot in the age of 3D graphics.

This visualisation was a by-product of a dynamic programming scoring matrix and thus
MMLigner is unable to build such a visualisation in its current state. Extending MMLigner to
be able to produce such a visualisation is however, very useful and an important direction this
work should take.

8.1. EXTENSIONS TO THE RESEARCH PRESENTED IN THIS THESIS 165

0 20 40 60 80 100 120 140 160
0

50

100

150

1MBD

Competing Alignment landscape for 1HHOA vs. 1MBD

1
H

H
O

 (
C

h
a

in
 A

)

1.06

1.07

1.08

1.09

1.1

1.11

1.12

x 10
4

0

20

40

60

80

100

120

140

160

0

50

100

150

1.05

1.06

1.07

1.08

1.09

1.1

1.11

1.12

1.13

x 10
4

1MBD

Competing Alignment landscape for 1HHOA vs. 1MBD

1HHO (Chain A)

I−
v
a
lu

e

1.06

1.07

1.08

1.09

1.1

1.11

1.12

x 10
4

Figure 8.1: Landscape produced when aligning human hæmoglobin (wwPDB 1HHO-A) against
the closely related sperm whale myoglobin (wwPDB 1MBD). The bottom shows the superposition
calculated from the optimal alignment highlighted by the yellow line through the “valley”.

166 CHAPTER 8. CONCLUSIONS AND FUTURE DIRECTIONS

0 20 40 60 80 100 120 140
0

20

40

60

80

100

120

140

3CHY

Competing Alignment landscape for 3CHY vs. 5NLL

5
N

L
L

9800

9850

9900

9950

10000

10050

10100

10150

0

20

40

60

80

100

120

140

0

20

40

60

80

100

120

140

9750

9800

9850

9900

9950

10000

10050

10100

10150

10200

3CHY

Competing Alignment landscape for 3CHY vs. 5NLL

5NLL

I−
v
a

lu
e

9800

9850

9900

9950

10000

10050

10100

10150

Figure 8.2: Landscape produced when aligning the Escherichia Coli chemotaxis protein CheY
(wwPDB 3CHY) against Clostridium beijerinckii flavodoxin (wwPDB 5NLL). The bottom figures
show the superpositions calculated from the optimal alignment, shown as a yellow line, and a
closely competing alignment, shown as a red line.

8.1. EXTENSIONS TO THE RESEARCH PRESENTED IN THIS THESIS 167

0 20 40 60 80 100 120 140 160
0

20

40

60

80

100

120

140

160

180

1PHN (Chain A)

Competing Alignment landscape for 1PHNA vs. 1MBDA

1
M

B
D

 (
C

h
a
in

 A
)

1.155

1.16

1.165

1.17

1.175

1.18

1.185

x 10
4

0

20

40

60

80

100

120

140

160

0

20

40

60

80

100

120

140

160

180

1.15

1.155

1.16

1.165

1.17

1.175

1.18

1.185

1.19

x 10
4

1PHN (Chain A)

Competing Alignment landscape for 1PHNA vs. 1MBDA

1MBD (Chain A)

I−
v
a

lu
e

1.155

1.16

1.165

1.17

1.175

1.18

1.185

x 10
4

Figure 8.3: Landscape produced when aligning Cyanidium caldarium phycocyanin (wwPDB
1PHN) against sperm whale myoglobin (wwPDB 1MBD). The bottom figures show the superpo-
sitions calculated from the optimal alignment, shown as a yellow line, and a closely competing
alignment, shown as a red line.

168 CHAPTER 8. CONCLUSIONS AND FUTURE DIRECTIONS

Figure 8.4: Landscape produced when aligning Succinyl-CoA synthetase from Sus scrofa (ww-
PDB 1EUD-A) against glutamate mutase from Clostridium cochlearium (wwPDB 1CCW-A). The
bottom figures show the superpositions calculated from the optimal alignment, shown as a
yellow line, and a closely competing alignment, shown as a red line.

8.1. EXTENSIONS TO THE RESEARCH PRESENTED IN THIS THESIS 169

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

2SAS

Competing Alignment landscape for 1JFJ (Chain A) vs. 2SAS

1
J
F

J
 (

C
h
a
in

 A
)

1.184

1.186

1.188

1.19

1.192

1.194

1.196

1.198

x 10
4

0

20

40

60

80

100

120

140

160

180

200

0

20

40

60

80

100

120

140

1.18

1.185

1.19

1.195

1.2

x 10
4

2SAS

Competing Alignment landscape for 1JFJ (Chain A) vs. 2SAS

1JFJ (Chain A)

I−
v
a

lu
e

1.184

1.186

1.188

1.19

1.192

1.194

1.196

1.198

x 10
4

Figure 8.5: Landscape produced when aligning the pair of calcium-binding proteins from Bran-
chiostoma lanceolatum (wwPDB 2SAS-A) and Entamoeba histolytica (wwPDB 1JFJ-A). The
bottom figures show the superpositions calculated from the optimal alignment, shown as a yel-
low line, and a closely competing alignment, shown as a red line. This is an example of the
dynamic programming algorithm (see Section 6.3.1 becoming distracted by clase early matches.
Though it recovers enough to notice the CC, NC, and CN domain alignments (see Figure 6.3).

170 CHAPTER 8. CONCLUSIONS AND FUTURE DIRECTIONS

References

Abroi, A. and Gough, J. (2011). Are viruses a source of new protein folds for organisms?–
virosphere structure space and evolution, Bioessays 33(8): 626–635.

Adrian, M., Dubochet, J., Lepault, J. and McDowall, A. W. (1984). Cryo-electron microscopy
of viruses, Nature 308(5954): 32–36.

Akutsu, T. (1996). Protein structure alignment using dynamic programing and iterative im-
provement, IEICE Transactions on Information and Systems, Vol. E79-D, pp. 1629–1636.

Allison, L., Wallace, C. and Yee, C. (1992). Finite-state models in the alignment of macro-
molecules, Journal of Molecular Evolution 35(1): 77–89.

Alt, H., Mehlhorn, K., Wagener, H. and Welzl, E. (1988). Congruence, similarity, and symme-
tries of geometric objects, Discrete and Computational Geometry 3(3): 237–256.

Altschul, S. F. (1991). Amino acid substitution matrices from an information theoretic per-
spective, Journal of Molecular Biology 219(3): 555–565.

Andersen, C. A. and Rost, B. (2009). Secondary structure assignement, in J. Gu and P. E.
Bourne (eds), Structural Bioinformatics, John Wiley and Sons, chapter 19, pp. 459–484.

Anfinsen, C. B. (1973). Principles that govern the folding of protein chains, Science
181(4096): 223–230.

Banerjee, A., Dhillon, I. S., Ghosh, J. and Sra, S. (2005). Clustering on the unit hypersphere
using von Mises-Fisher distributions, Journal of Machine Learning Research 6(Sep): 1345–
1382.

Bar-Ilan, J., Mat-Hassan, M. and Levene, M. (2006). Methods for comparing rankings of search
engine results, Computer Networks 50(10): 1448–1463.

Bayes, T. and Price, R. (1763). An essay towards solving a problem in the doctrine of chance,
Philosophical Transactions of the Royal Society of London 53: 370–418.

Bellman, R. (1952). On the theory of dynamic programming, Proceedings of the National
Academy of Sciences. USA 38(8): 716–719.

Bellman, R. (1957). Dynamic Programming, Princeton University Press, Princeton, New Jersey.

Berman, H., Henrick, K. and Nakamura, H. (2003). Announcing the worldwide Protein Data
Bank, Nature Structural & Molecular Biology 10(980).

171

172 REFERENCES

Berman, H. M., Battistuz, T., Bhat, T. N., Bluhm, W. F., Bourne, P. E., Burkhardt, K., Feng,
Z., Gilliland, G. L., Iype, L., Jain, S., Fagan, P., Marvin, J., Padilla, D., Ravichandran,
V., Schneider, B., Thanki, N., Weissig, H., Westbrook, J. D. and Zardecki, C. (2002). The
Protein Data Bank, Acta Crystallographica Section D 58(6 Part 1): 899–907.

Berman, H., Westbrook, J., Feng, Z., Gilliland, G., Weissig, T. B. H., Shindyalov, I. and
Bourne, P. (2000). The protein data bank, Nucleic Acids Research 28(1): 235–242.

Bernstein, F. C., Koetzle, T. F., Williams, G. J. B., Jr., E. F. M., Brice, M. D., Rodgers,
J. R., Kennard, O., Shimanouchi, T. and Tasumi, M. (1977). The Protein Data Bank: a
computer-based archival file for macromolecular structures, Journal of Molecular Biology
112(3): 535–542.

Birzele, F., Gewehr, J. E., Csaba, G. and Zimmer, R. (2006). Vorolign–Fast structural align-
ment using voronoi contacts, Bioinformatics 23(2): e205–e211.

Björklund, Åsa. K., Ekman, D. and Elofsson, A. (2006). Expansion of protein domain repeats,
PLoS Computational Biology 2(8): 1–12.

Bork, P. (1991). Shuffled domains in extracellular proteins, FEBS Letters 286(1–2): 47–54.

Boulton, D. M. and Wallace, C. S. (1973). An information measure for hierarchic classification,
The Computer Journal 16(3): 254–261.

Bourne, P. E., Berman, H. M., McMahon, B., Watenpaugh, K. D., Westbrook, J. D. and
Fitzgerald, P. M. (1997). Macromolecular crystallographic information file (mmCIF), Macro-
molecular Crystallography Part B, Vol. 277 of Methods in Enzymology, Academic Press,
pp. 571–590.

Box, G. E. P. and Draper, N. R. (1987). Empirical Model-Building and Response Surfaces,
John Wiley & Sons, p. 424.

Brown, P., Pullan, W., Yang, Y. and Zhou, Y. (2016). Fast and accurate non-sequential protein
structure alignment using a new asymmetric linear sum assignment heuristic, Bioinformatics
32(3): 370–377.

Bu, Z. and Callaway, D. J. (2011). Proteins MOVE! Protein dynamics and long-range allostery
in cell signaling, in R. Donev (ed.), Protein Structure and Diseases, Vol. 83 of Advances in
Protein Chemistry and Structural Biology, Academic Press, chapter 5, pp. 163–221.

Budinska, E., Kugler, K. and Lin, S. (2011). Package topklists for rank-based genomic data
integration, in M. G. Schimek (ed.), Proceedings of IASTED Computational Biology.

Budowski-Tal, I., Nov, Y. and Kolodny, R. (2010). FragBag, an accurate representation of
protein structure, retrieves structural neighbors from the entire pdb quickly and accurately,
Proceedings of the National Academy of Sciences. USA 107(8): 3481–3486.

Camproux, A. C., Tuffery, P., Chevrolat, J. P., Boisvieux, J. F. and Hazout, S. (1999). Hidden
markov model approach for identifying the modular framework of the protein backbone,
Protein Engineering 12(12): 1063–1073.

Cantor, D. G. and Zassenhaus, H. (1981). A new algorithm for factoring polynomials over finite
fields, Mathematics of Computation 36(154): 587–592.

REFERENCES 173

Casella, G. and Berger, R. L. (2001). Statistical Inference, 2 edn, Duxbury Press, Pacific Grove,
California.

Chaitin, G. J. (1966). On the length of programs for computing finite binary sequences, Journal
of the ACM (JACM) 13(4): 547–569.

Chambers, J. M. (1983). Graphical methods for data analysis, Wadsworth International Group.

Chandonia, J. M., Hon, G., Walker, N. S., Lo Conte, L., Koehl, P., Levitt, M. and Brenner, S. E.
(2004). The ASTRAL compendium in 2004, Nucleic Acids Research 32(suppl 1): D189–D192.

Chothia, C. (1992). One thousand families for the molecular biologist, Nature 357(6379): 543–
544.

Chothia, C. and Lesk, A. M. (1986). The relation between the divergence of sequence and
structure in proteins, The EMBO Journal 5(4): 823–826.

Chu, C.-H., Tang, C. Y., Tang, C.-Y. and Pai, T.-W. (2008). Angle-distance image matching
techniques for protein structure comparison, Journal of Molecular Recognition 21(6): 442–
452.

Cohen, F. E. and Sternberg, M. J. E. (1980). On the prediction of protein structure: The
significance of the root-mean-square deviation, Journal of Molecular Biology 138(2): 321–
333.

Cohen, G. (1997). ALIGN: a program to superimpose protein coordinates, accounting for
insertions and deletions, Journal of Applied Crystallography 30(6): 1160–1161.

Conway, J. H. and Sloane, N. J. A. (1984). On the voronoi regions of certain lattices., SIAM
Journal on Algebraic and Discrete Methods 5: 294–305.

Cormen, T. H., Leiserson, C. E., Rivest, R. L. and Stein, C. (2009). Introduction to Algorithms,
3 edn, MIT Press.

Coutsias, E. A., Seok, C. and Dill, K. A. (2004). Using quaternions to calculate RMSD, Journal
of Computational Chemistry 25(15): 1849–1857.

Crick, F. (1970). Central dogma of molecular biology, Nature 227(5258): 561–563.

Daimond, R. A. (1988). A note on the rotational superposition problem, Acta Crystallographica
Section A 44(2): 211–216.

Darwin, C. R. (1859). On the origin of species or the Preservation of Favored Races in the
Struggle for Life, Murray, London.

de Oliveira, S. H. P., Shi, J. and Deane, C. M. (2015). Building a better fragment library for
De Novo protein structure prediction, PLoS ONE 10(4): 1–20.

Delaunay, B. (1934). Sur la sphère vide. a la mémoire de georges voronöı, Bulletin de l’Académie
des Sciences de l’URSS. Classe des sciences mathématiques et na 6: 793–800.

Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum likelihood from incomplete
data via the EM algorithm, Journal of the Royal Statistical Society. Series B (Methodological)
39(1): 1–38.

174 REFERENCES

Dowe, D. L., Oliver, J. J., Baxter, R. A. and Wallace, C. S. (1996). Bayesian estimation of
the von mises concentration parameter, in K. M. Hanson and R. N. Silver (eds), Maximum
Entropy and Bayesian Methods: Santa Fe, New Mexico, U.S.A., 1995 Proceedings of the
Fifteenth International Workshop on Maximum Entropy and Bayesian Methods, Springer
Netherlands, Dordrecht, pp. 51–60.

Edgar, R. C. (2004). Muscle: multiple sequence alignment with high accuracy and high through-
put, Nucleic Acids Research 32(5): 1792–1797.

Edgar, R. C. (2010). Quality measures for protein alignment benchmarks, Nucleic Acids Re-
search 38(7): 2145–2153.

Edwards, H. and Deane, C. M. (2015). Structural bridges through fold space, PLoS Computa-
tional Biology 11(9): e1004466.

Eidhammer, I., Jonassen, I. and Taylor, W. R. (2000). Structure comparison and structure
patterns, Journal of Computational Biology 7(5): 685–716.

Eidhammer, I., Jonassen, I. and Taylor, W. R. (2004). Protein Bioinformatics: An algorithmic
approach to sequence and structure analysis, J. Wiley & Sons.

Einstein, A. (1933). On the method of theoretical physics, the Herbert Spencer Lecture.

Elias, P. (1975). Universal codeword sets and representations of the integers, IEEE Transactions
on Information Theory 21(2): 194–203.

Ellis, R. J. (2006). Molecular chaperones: assisting assembly in addition to folding, Trends in
Biochemical Sciences 31(7): 395–401.

Emekli, U., Schneidman-Duhovny, D., Wolfson, H. J., Nussinov, R. and Haliloglu, T. (2008).
HingeProt: automated prediction of hinges in protein structures, Proteins 70(4): 1219–1227.

Fagin, R., Kumar, R., Mahdian, M., Sivakumar, D. and Vee, E. (2006). Comparing partial
rankings, SIAM Journal on Discrete Mathematics 20(3): 628–648.

Fagin, R., Kumar, R. and Sivakumar, D. (2003). Comparing top k lists, SIAM Journal on
Discrete Mathematics 17(1): 134–160.

Falicov, A. and Cohen, F. E. (1996). A surface of minimum area metric for the structural
comparison of proteins, Journal of Molecular Biology 258(5): 871–892.

Farr, G. and Wallace, C. (2002). The complexity of strict minimum message length inference,
The Computer Journal 45(3): 285–292.

Fischer, D., Barret, C., Bryson, K., Elofsson, A., Godzik, A., Jones, D., Karplus, K. J., Kelley,
L. A., MacCallum, R. M., Pawowski, K., Rost, B., Rychlewski, L. and Sternberg, M. (1999).
CAFASP-1: Critical assessment of fully automated structure prediction methods, Proteins:
Structure, Function, and Genetics 37(Suppl. 3): 209–217.

Fisher, N. I., Lewis, T. and Embleton, B. J. J. (1987). Statistical Analysis of Spherical Data,
Cambridge University Press.

REFERENCES 175

Fox, N. K., Brenner, S. E. and Chandonia, J. M. (2013). SCOPe: Structural classification of
proteins – extended, integrating SCOP and ASTRAL data and classification of new struc-
tures, Nucleic Acids Research 42(Database issue): D304–D309.

França, L. T. C., Carrilho, E. and Kist, T. B. L. (2002). A review of DNA sequencing techniques,
Quarterly Reviews of Biophysics 35(2): 169–200.

Fraser, A. S. (1957). Simulation of genetic systems by automatic digital computers i. introduc-
tion, Australian Journal of Biological Sciences 10(4): 484–491.

Frauenfelder, H., Sligar, S. G. and Wolynes, P. G. (1991). The energy landscapes and motions
of proteins, Science 254(5038): 1598–1603.

Friedberg, I. and Godzik, A. (2005). Connecting the protein structure universe by using sparse
recurring fragments, Structure 13(8): 1213–1224.

Friedberg, I., Harder, T., Kolodny, R., Sitbon, E., Li, Z. and Godzik, A. (2007). Using an
alignment of fragment strings for comparing protein structures, Bioinformatics 23(2): e219–
e224.

Fury, W., Batliwalla, F., Gregersen, P. K. and Li, W. (2006). Overlapping probabilities of top
ranking gene lists, hypergeometric distribution, and stringency of gene selection criterion,
IEEE Conference on Engineering in Medicine and Biology Society, pp. 5531–5534.

Garey, M. R. and Johnson, D. S. (1979). Computers and intractability: a guide to the theory
of NP-completeness, W. H. Freeman.

Gerstein, M., Anderson, B. F., Norris, G. E., Baker, E. N., Lesk, A. M. and Chothia, C. (1993).
Domain closure in lactoferrin. Two hinges produce a see-saw motion between alternative
close-packed interfaces, Journal of Molecular Biology 234(2): 357–372.

Gerstein, M. and Chothia, C. (1991). Analysis of protein loop closure: Two types of hinges
produce one motion in lactate dehydrogenase, Journal of Molecular Biology 220(1): 133–149.

Gerstein, M., Lesk, A. M. and Chothia, C. (1994). Structural mechanisms for domain move-
ments in proteins, Biochemistry 33(22): 6739–6749.

Gerstein, M. and Levitt, M. (1998). Comprehensive assessment of automatic structural align-
ment against a manual standard, the scop classification of proteins, Protein Science 7(2): 445–
456.

Godzik, A., Jambon, M. and Friedberg, I. (2007). Computational protein function prediction:
Are we making progress?, Cellular and Molecular Life Sciences 64(19): 2505–2511.

Golub, G. H. and van der Vorst, H. A. (2000). Eigenvalue computation in the 20th century,
Journal of Computational and Applied Mathematics 123(1–2): 35–65.

Gotoh, O. (1982). An improved algorithm for matching biological sequences, Journal of Molec-
ular Biology 162(3): 705–708.

Grindley, H. M., Artymiuk, P. J., Rice, D. W. and Willett, P. (1993). Identification of tertiary
structure resemblance in proteins using a maximal common subgraph isomorphism algorithm,
Journal of Molecular Biology 229(3): 707–721.

176 REFERENCES

Grishin, N. V. and Phillips, M. A. (1994). The subunit interfaces of oligomeric enzymes are
conserved to a similar extent to the overall protein sequences, Protein Science 3(12): 2455–
2458.

Guerler, A. and Knapp, E.-W. (2008). Novel protein folds and their nonsequential structural
analogs, Protein Science 17(8): 1374–1382.

Gusfield, D. (1997). Algorithms on Strings, Trees and Sequences: Computer Science and Com-
putational Biology, Cambridge University Press, chapter 11.

Hájek, A. (2003). Interpretations of probability, in E. Zalta (ed.), The Stanford Encyclopedia
of Philosophy.

Hamilton, W. R. (1844). On a new species of imaginary quantities, connected with the theory
of quaternions, Proceedings of the Royal Irish Academy 2: 424–434.

Hamilton, W. R. and Hamilton, W. E. (1866). Elements of quaternions, Longmans, Green, &
Company.

Hartl, F. U. (1996). Molecular chaperones in cellular protein folding, Nature 381(6583): 571–
580.

Hasegawa, H. and Holm, L. (2009). Advances and pitfalls of protein structural alignment,
Current Opinion in Structural Biology 19: 341–348.

Hastings, W. K. (1970). Monte carlo sampling methods using markov chains and their appli-
cations, Biometrika 57(1): 97–109.

Hayward, S. (1999). Structural principles governing domain motions in proteins, Proteins:
Structure, Function, and Bioinformatics 36(4): 425–435.

Hayward, S. and Berendsen, H. J. C. (1998). Systematic analysis of domain motions in proteins
from conformational change; new results on citrate synthase and T4 lysozyme, Proteins:
Structure, Function, and Genetics 30(2): 144–154.

Hogg, R. V. and Craig, A. (1994). Introduction to mathematical statistics, Prentice Hall.

Holm, L., Ouzounis, C., Sander, C., Tuparev, G. and Vriend, G. (1992). A database of protein
structure families with common folding motifs, Protein Science 1(12): 1691–1698.

Holm, L. and Sander, C. (1993). Protein structure comparison by alignment of distance matri-
ces, Journal of Molecular Biology 233(1): 123–138.

Holm, L. and Sander, C. (1998). Dictionary of recurrent domains in protein structures, Proteins
33(1): 88–96.

Huffman, D. A. (1952). A method for the construction of minimum-redundancy codes, Pro-
ceedings of the IRE, Vol. 40, pp. 1098–1101.

Illerg̊ard, K., Ardell, D. H. and Elofsson, A. (2009). Structure is three to ten times more
conserved than sequence – a study of structural response in protein cores, Proteins: Structure,
Function, and Bioinformatics 77(3): 499–508.

REFERENCES 177

Ilyin, V. A., Abyzov, A. and M.Leslin, C. (2004). Structural alignment of proteins by a novel
TOPOFIT method, as a superimposition of common volumes at a topomax point, Protein
Science 13(7): 1865–1874.

Irving, J. A., Whisstock, J. C. and Lesk, A. M. (2001). Protein structural alignments and
functional genomics, Proteins: Structure, Function, and Bioinformatics 42: 378–382.

Jacobi, C. G. J. (1846). Über ein leichtes Verfahren, die in der Theorie der Säkularstörungen
vorkommenden Gleichungen numerisch aufzulösen, Journal für die Reine und Angewandte
Mathematik 30: 51–95.

Joseph, A. P., Agarwal, G., Mahajan, S., Gelly, J.-C., Swapna, L. S., Offmann, B., Cadet, F.,
Bornot, A., Tyagi, M., Valadié, H., Schneider, B., Etchebest, C., Srinivasan, N. and Brevern,
A. G. D. (2010). A short survey on protein blocks, Biophysical Reviews 2(3): 137–147.

Jurman, G., Riccadonna, S., Visintainer, R. and Furlanello, C. (2009). Canberra distance on
ranked lists, Proceedings, Advances in Ranking–NIPS 09 Workshop, pp. 22–27.

Jurman, G., Riccadonna, S., Visintainer, R. and Furlanello, C. (2012). Algebraic comparison
of partial lists in bioinformatics, PloS One 7(5): e36540.

Kabsch, W. (1976). A solution for the best rotation to relate two sets of vectors, Acta Crystal-
lographica Section A 32(5): 922–923.

Kabsch, W. (1978). A discussion of the solution for the best rotation to relate two sets of
vectors, Acta Crystallographica Section A 34(5): 827–828.

Kabsch, W. and Sander, C. (1983). Dictionary of protein secondary structure: pattern recog-
nition of hydrogen-bonded and geometrical features., Biopolymers 22(12): 2577–2637.

Karlin, S. and Altschul, S. F. (1990). Methods for assessing the statistical significance of
molecular sequence features by using general scoring schemes, Proceedings of the National
Academy of Sciences. USA 87(6): 2264–2268.

Karney, C. F. (2007). Quaternions in molecular modeling, Journal of Molecular Graphics and
Modelling 25(5): 595–604.

Karpen, M. E., de Haseth, P. L. and Neet, K. E. (1989). Comparing short protein substructures
by a method based on backbone torsion angles, Proteins: Structure, Function, and Genetics
6(2): 155–167.

Kasarapu, P. (2015). Modelling of directional data using kent distributions, arXiv preprint
abs/1506.08105.
URL: http://arxiv.org/abs/1506.08105

Kasarapu, P. (2016). Statistical Inference Problems with Applications to Computational Struc-
tural Biology, PhD thesis, Monash University, Australia.

Kasarapu, P. and Allison, L. (2015). Minimum message length estimation of mixtures of
multivariate gaussian and von mises-fisher distributions, Machine Learning 100(2): 333–378.

Kearsley, S. K. (1989). On the orthogonal transformation used for structural comparisons, Acta
Crystallographica Section A A45: 208–210.

178 REFERENCES

Kendall, M. (1938). A new measure of rank correlation, Biometrika 30(1-2): 81–89.

Kendrew, J. C., Bodo, B., Dintzis, H. M., Parrish, R. G., Wyckoff, H. and Phillips, D. C.
(1958). A three-dimensional model of the myoglobin molecule obtained by X-ray analysis,
Nature 181(4610): 662–666.

KenKnight, C. E. (1984). Comparison of methods of matching protein structures, Acta Crys-
tallographica Section A 40(6): 708–712.

Kent, J. T. (1982). The Fisher-Bingham distribution on the sphere, Journal of the Royal
Statistical Society: Series B (Methodological) 44(1): 71–80.

Kihara, D. and Skolnick, J. (2003). The PDB is a covering set of small protein structures,
Journal of Molecular Biology 334(4): 793–802.

Kinjo, A. R., Suzuki, H., Yamashita, R., Ikegawa, Y., Kudou, T., Igarashi, R., Kengaku, Y.,
Cho, H., Standley, D. M., Nakagawa, A. and Nakamura, H. (2012). Protein Data Bank Japan
(PDBj): maintaining a structural data archive and resource description framework format,
Nucleic Acids Research 40(Database issue): D453–D460.

Kirkpatrick, S., D., G. C. and Vecchi, M. P. (1983). Optimization by simulated annealing,
Science 220(4598): 671–680.

Kleywegt, G. J. (1996). Use of non-crystallographic symmetry in protein structure refinement,
Acta Crystallographica Section D 52(4): 842–857.

Kleywegt, G. J. and Jones, T. A. (November 1994). A super position, CCP4/ESF-EACBM
Newsletter on Protein Crystallography 31: 9–14.

Knuth, D. E. (1999a). The art of computer programming, Vol. 3, Addison Wesley.

Knuth, D. E. (1999b). The art of computer programming, Vol. 3, Addison Wesley, pp. 426–458.

Koehl, P. (2001). Protein structure similarities, Current opinion in structural biology
11(3): 348–353.

Kolbeck, B., May, P., Schmidt-Goenner, T., Steinke, T. and Knapp, E.-W. (2006). Connectiv-
ity independent protein-structure alignment: a hierarchical approach, BMC Bioinformatics
7(510).

Kolmogorov, A. N. (1963). On tables of random numbers, Sankhyā: The Indian Journal of
Statistics, Series A 25(4): 369–376.

Kolodny, R., Koehl, P., Guibas, L. and Levitt, M. (2002). Small libraries of protein fragments
model native protein structures accurately, Journal of Molecular Biology 323(2): 297–307.

Kolodny, R., Koehl, P. and Levitt, M. (2005). Comprehensive evaluation of protein struc-
ture alignment methods: scoring by geometric measures, Journal of Molecular Biology
346(4): 1173–1188.

Kolodny, R. and Linial, N. (2004). Approximate protein structural alignment in polynomial
time, Proceedings of the National Academy of Sciences. USA 101(33): 12201–12206.

REFERENCES 179

Konagurthu, A. S., Kasarapu, P., Allison, L., Collier, J. H. and Lesk, A. (2014). On sufficient
statistics of least-squares superposition of vector sets, RECOMB, Vol. LNCS/LNBI 8394,
pp. 144–159.

Konagurthu, A. S., Lesk, A. M., Abramson, D., Stuckey, P. J. and Allison, L. (2013). Statistical
inference of protein “LEGO bricks”, Thirteenth IEEE International Conference on Data
Mining, pp. 1091–1096.

Konagurthu, A. S., Lesk, A. M. and Allison, L. (2012). Minimum message length inference of
secondary structure from protein coordinate data, Bioinformatics 28(12): i97–i105.

Konagurthu, A. S., Stuckey, P. J. and Lesk, A. M. (2008). Structural search and retreival using
tableau representation of protein folding patterns, Bioinformatics 24: 645–651.

Konagurthu, A. S., Whisstock, J. C., Stuckey, P. J. and Lesk, A. M. (2006). MUSTANG: a
multiple structural alignment algorithm, Proteins: Structure, Function, and Bioinformatics
64(3): 559–574.

Krissinel, E. and Henrick, K. (2003). Protein structure comparison in 3D based on secondary
structure matching (SSM) followed by Cα alignment, scored by a new structural similarity
function., Proceedings of the Fifth international Conference on Molecular Structural Biology,
Vol. 88, Vienna.

Krissinel, E. and Henrick, K. (2004). Secondary-structure matching (SSM), a new tool for
fast protein structure alignment in three dimensions, Acta Crystallographica Section D
60(12): 2256–2268.

Kruskal, J. B. (1983). An overview of sequence comparison: Time warps, string edits, and
macromolecules, SIAM Review 25(2): 201–237.

Lackner, P., Koppensteiner, W. A., Sippl, M. J. and Domingues, F. S. (2000). ProSup: a refined
tool for protein structure alignment, Protein Engineering, Design & Selection 13(11): 745–
752.

Lance, G. and Williams, W. (1966). Computer programs for hierarchical polythetic classification
(“similarity analyses”), The Computer Journal 9(1): 60–64.

Lehmer, D. (1960). Teaching combinatorial tricks to a computer, Proc. Sympos. Appl. Math.
Combinatorial Analysis, Vol. 10, pp. 179–193.

Lesk, A. (1986). A toolkit for computational molecular biology. II. on the optimal superposition
of two sets of coordinates, Acta Crystallographica Section A 42(2): 110–113.

Lesk, A. M. (1995). Systematic representation of protein folding patterns, Journal of Molecular
Graphics 13: 159–164.

Lesk, A. M. (2000). The unreasonable effectiveness of mathematics in molecular biology, The
Mathematical Intelligencer 22(2): 28–37.

Lesk, A. M. (2001a). Introduction to Protein Architecture: The Structural Biology of Proteins,
Oxford University Press.

Lesk, A. M. (2001b). Introduction to protein architecture: the structural biology of proteins,
Oxford University Press.

180 REFERENCES

Lesk, A. M. (2010). Introduction to Protein Science: Architecture, Function, and Genomics, 2
edn, Oxford University Press.

Leslin, C. M., Abyzov, A. and Ilyin, V. A. (2007). TOPOFIT-DB, a database of protein
structural alignments based on the TOPOFIT method, Nucleic Acids Research 35(suppl
1): D317–D321.

Levine, M., Stuart, D. and Williams, J. (1984). A method for systematic comparison of the
three-dimensional structures of proteins and some results, Acta Crystallographica Section A
40(5): 600–610.

Levitt, M. and Chothia, C. (1976). Structural patterns in globular proteins, Nature
261(5561): 552–558.

Levitt, M. and Gerstein, M. (1998). A unified statistical framework for sequence comparison and
structure comparison, Proceedings of the National Academy of Sciences. USA 95(11): 5913–
5920.

Linderstrøm-Lang, K. U. (1952). Proteins and Enzymes. (Lane Medical Lectures.)., Vol. 6 of
Stanford University Publications. University Series. Medical Sciences., Stanford University
Press.

Lo Conte, L., Ailey, B., Hubbard, T. J., Brenner, S. E., Murzin, A. G. and Chothia, C. (2000).
SCOP: a structural classification of proteins database., Nucleic Acids Research 28(1): 257–
259.

Ma, J. and Wang, S. (2014). Algorithms, applications, and challenges of protein structure
alignment, Advances in Protein Chemistry and Structural Biology 94: 121–175.

Mackay, A. L. (1984). Quaternion transformation of molecular orientation, Acta Crystallo-
graphica Section A 40(2): 165–166.

MacKay, D. J. C. (2003). Information Theory, Inference, and Learning Algorithms, Cambridge
University Press, Cambridge, UK.

Mardia, K. and Jupp, P. (1999). Directional Statistics, Probability and Statistics, Wiley, Chich-
ester, England.

Marsh, R. E. and Donohue, J. (1967). Crystal structure studies of amino acids and peptides,
Advances in Protein Chemistry 22: 235–256.

Marti-Renom, M. A., Capriotti, E., Shindyalov, I. N. and Bourne, P. E. (2009). Structure
comparison and alignment, in J. Gu and P. E. Bourne (eds), Structural Bioinformatics, John
Wiley and Sons, chapter 16, pp. 397–417.

May, A. C. (1996). Pairwise iterative superposition of distantly related proteins and assessment
of the significance of 3-D structural similarity, Protein Engineering 9(12): 1093–1101.

McLachlan, A. D. (1972). A mathematical procedure for superimposing coordinates of proteins,
Acta Crystallographica Section A 28: 656–657.

McLachlan, A. D. (1982). Rapid comparison of protein structures, Acta Crystallographica
Section A 38(6): 871–873.

REFERENCES 181

McLachlan, G. J. and Basford, K. E. (1987). Mixture Models, Vol. 84 of Statistics: textbooks
and monographs, Marcel Dekker Inc., New York and Basel.

Meier, S. and Özbek, S. (2007). A biological cosmos of parallel universes: Does protein struc-
tural plasticity facilitate evolution?, BioEssays 29(11): 1095–1104.
URL: http://dx.doi.org/10.1002/bies.20661

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. and Teller, E. (1953).
Equation of state calculations by fast computing machines, The Journal of Chemical Physics
21(6): 1087–1092.

Miao, X., Bryson, M. G. and Valafar, H. (2008). TALI: Protein structure alignment using
backbone torsion angles, Journal of Bioinformatics and Computational Biology 6(1): 163–
181.

Micheletti, C., Seno, F. and Maritan, A. (2000). Recurrent oligomers in proteins: An optimal
scheme reconciling accurate and concise backbone representations in automated folding and
design studies, Proteins: Structure, Function, and Bioinformatics 40(4): 662–674.

Mitchell, M. (1996). An Introduction to Genetic Algorithms, Complex Adaptive Systems, The
MIT Press, Cambridge, Massachusetts.

Mizuguchi, K., Deane, C. M., Blundell, T. L. and Overington, J. P. (1998). HOM-
STRAD: a database of protein structure alignments for homologous families., Protein Science
7(11): 2469–2471.

Mosca, R., Brannetti, B. and Schneider, T. R. (2008). Alignment of protein structures in the
presence of domain motions, BMC Bioinformatics 9(352).

Moult, J., Fidelis, K., Kryshtafovych, A., Schwede, T. and Tramontano, A. (2014). Critical
assessment of methods of protein structure prediction (CASP) – round x, Proteins: Structure,
Function, and Bioinformatics 82(Issue Supplement S2): 1–6.

Moult, J., Pedersen, J. T., Judson, R. and Fidelis, K. (1995). A large-scale experiment to assess
protein structure prediction methods, Proteins: Structure, Function, and Bioinformatics
23(3): ii–iv.

Muirhead, H. and Perutz, M. F. (1963). Structure of hæmoglobin, Nature 199(4894): 633–638.

Murzin, A. G. (1998). How far divergent evolution goes in proteins, Current Opinion in Struc-
tural Biology 8(3): 380–387.

Murzin, A. G., Brenner, S. E., Hubbard, T. and Chothia, C. (1995). SCOP: A structural
classification of proteins database for the investigation of sequences and structures, Journal
of Molecular Biology 247(4): 536–540.

Myrvold, W. and Ruskey, F. (2001). Ranking and unranking permutations in linear time,
Information Processing Letters 79(6): 281–284.

Needleman, S. B. and Wunsch, C. D. (1970). A general method applicable to the search
for similarities in the amino acid sequence of two proteins., Journal of Molecular Biology
48(3): 443–453.

182 REFERENCES

Nguyen, M. N., Tan, K. P. and Madhusudhan, M. S. (2011). Click–Topology-independent
comparison of biomolecular 3D structures, Nucleic Acids Research 39(suppl. 2): W24–W28.

Oliver, J. J. and Baxter, R. A. (1994). MML and Bayesianism: Similarities and differences
(Introduction to minimum encoding inference – part ii), Technical Report Tech Report 206,
Department of Computer Science, Monash University, Clayton, Vic. 3168, Australia.

Orengo, C. A., Michie, A. D., Jones, S., Jones, D. T., Swindells, M. B. and Thornton, J. M.
(1997). CATH–a hierarchic classification of protein domain structures, Structure 5(8): 1093–
1108.

Orengo, C. A. and Taylor, W. R. (1990). A rapid method for protein structure alignment.,
Journal of Theoretical Biology 147: 517–551.

Orengo, C. A. and Taylor, W. R. (1996). SSAP: sequential structure alignment program for
protein structure comparison, Computer Methods for Macromolecular Sequence Analysis, Vol.
266 of Methods in enzymology, Academic Press, pp. 617–635.

Orengo, C., Jones, D. and Thornton, J. (1994). Protein superfamilies and domain superfolds,
Nature 372(6507): 631–634.

Ortiz, A. R., Strauss, C. E. and Olmea, O. (2002). MAMMOTH (matching molecular mod-
els obtained from theory): An automated method for model comparison., Protein Science
11(11): 2606–2621.

Pandit, S. B. and Skolnick, J. (2008). Fr-TM-Align: A new protein structural alignment method
based on fragment alignments and the TM-score, BMC Bioinformatics 9(531).

Pauling, L. and Corey, R. (1951). Configurations of polypeptide chains with favored orientations
around single bonds: Two new pleated sheets., Proceedings of the National Academy of
Sciences. USA 37: 729–740.

Pauling, L., Corey, R. and Branson, H. R. (1951). The structures of proteins: Two hydrogen
bonded helical configurations of polypeptide chain., Proceedings of the National Academy of
Sciences. USA 37: 205–211.

Pearson, R. (2007). Reciprocal rank-based comparison of ordered gene lists, IEEE Workshop
on Genomic Signal Processing and Statistics workshop, pp. 1–3.

Perutz, M. F., Kendrew, J. C. and Watson, H. C. (1965). Structure and function of haemoglobin.
II. Some relations between polypeptide chain configuration and amino acid sequence, Journal
of Molecular Biology 13: 669–678.

Ramachandran, G., Ramakrishnan, C. and Sasisekharan, V. (1963). Stereochemistry of
polypeptide chain configurations, Journal of Molecular Biology 7: 95–99.

Ramachandran, G. and Sasisekharan, V. (1968). Conformation of polypeptides and proteins,
Advances in Protein Chemistry 23: 283–437.

Rao, S. T. and Rossmann, M. G. (1973). Comparison of super-secondary structures in proteins,
Journal of Molecular Biology 76(2): 241–256.

REFERENCES 183

Raymond, J. W. and Willett, P. (2002). Maximum common subgraph isomorphism algo-
rithms for the matching of chemical structures, Journal of Computer-Aided Molecular Design
16(7): 521–533.

Richardson, J. S. (1981). The anatomy and taxonomy of protein structure., Advances in protein
chemistry 34: 167–339.

Richardson, S. and Green, P. J. (1997). On bayesian analysis of mixtures with an unknown
number of components, Journal of the Royal Statistical Society. Series B (Methodological)
59(4): 731–792.

Rissanen, J. (1978). Modeling by shortest data description, Automatica 14(5): 465–471.

Rissanen, J. (1983). A universal prior for integers and estimation by minimum description
length, Annals of Statistics 11: 416–431.

Rooman, M. J., Rodriguez, J. and Wodak, S. J. (1990). Automatic definition of recurrent local
structure motifs in proteins, Journal of Molecular Biology 213(2): 327–336.

Roy, A., Kucukural, A. and Zhang, Y. (2010). I-TASSER: a unified platform for automated
protein structure and function prediction, Nature Protocols 5: 725–738.

Russell, S. J. and Norvig, P. (2009a). Artificial Intelligence: A Modern Approach, 3 edn,
Pearson Education.

Russell, S. J. and Norvig, P. (2009b). Artificial Intelligence: A Modern Approach, 3 edn,
Pearson Education, chapter 4.

Rustici, M. and Lesk, A. M. (1994). Three-dimensional searching for recurrent structural motifs
in data bases of protein structures, Journal of Computational Biology 1(2): 121–132.

Sael, L., Li, B., La, D., Fang, Y., Ramani, K., Rustamov, R. and Kihara, D. (2008). Fast protein
tertiary structure retrieval based on global surface shape similarity, Proteins: Structure,
Function, and Bioinformatics 72(4): 1259–1273.

Sali, A. and Blundell, T. L. (1990). Definition of general topological equivalence in protein
structures. A procedure involving comparison of properties and relationships through simu-
lated annealing and dynamic programming, Journal of Molecular Biology 212(2): 403–428.

Scheeff, E. D. and Fink, J. L. (2005). Fundamentals of Protein Structure, Vol. 44, John Wiley
& Sons, Inc., chapter 2.

Schwede, T., Kopp, J., Guex, N. and Peitsch, M. C. (2003). SWISS-MODEL: an automated
protein homology-modeling server, Nucleic Acids Research 31(13): 3381–3385.

Schymkowitz, J., Borg, J., Stricher, F., Nys, R., Rousseau, F. and Serrano, L. (2005). The FoldX
web server: an online force field, Nucleic Acids Research 33(Web Server Issue): w382–w388.

Shannon, C. E. (1948). A mathematical theory of communication, Bell Systems Technical
Journal 27: 379–423.

Shatsky, M., Nussinov, R. and Wolfson, H. J. (2002). Flexible protein alignment and hinge
detection, Proteins: Structure, Function, and Bioinformatics 48(2): 242–256.

184 REFERENCES

Shatsky, M., Nussinov, R. and Wolfson, H. J. (2004). A method for simultaneous alignment of
multiple protein structures, Proteins: Structure, Function, and Bioinformatics 56(1): 143–
156.

Shindyalov, I. N. and Bourne, P. E. (1998). Protein structure alignment by incremental com-
binatorial extension (ce) of the optimal path., Protein Engineering, Design & Selection
11(9): 739–747.

Siew, N., Elofsson, A., Rychlewski, L. and Fischer, D. (2000). MaxSub: an automated measure
for the assessment of protein structure prediction quality., Bioinformatics 16(9): 776–785.

Simm, A. M., Baldwin, A. J., Busse, K. and Jones, D. D. (2007). Investigating protein structural
plasticity by surveying the consequence of an amino acid deletion from TEM-1 β-lactamase,
FEBS Letters 581(21): 3904–3908.

Simons, K. T., Bonneau, R., Ruczinski, I. and Baker, D. (1999). Ab initio protein struc-
ture prediction of CASP III targets using ROSETTA, Proteins: Structure, Function, and
Bioinformatics Suppl. 3: 171–176.

Singh, A. P. and Brutlag, D. L. (1997). Hierarchical protein structure superposition using
both secondary structure and atomic representations, International Conference on Intelligent
Systems in Molecular Biology, pp. 284–293.

Sippl, M. J. (2008). On distance and similarity in fold space, Bioinformatics 24(6): 872–873.

Sippl, M. J. and Wiederstein, M. (2008). A note on difficult structure alignment problems,
Bioinformatics 24(3): 426–427.

Slater, A., Castellanos, J. I., Sippl, M. J. and Melo, F. (2013). Towards the deveopment
of standardized methods for comparison, ranking and evaluation of structure alignments,
Bioinformatics 29: 47–53.

Solomonoff, R. J. (1964). A formal theory of inductive inference. part i, Information and control
7(1): 1–22.

Spearman, C. (1904). The proof and measurement of association between two things, The
American Journal of Psychology 15(1): 72–101.

Stivala, A., Wybrow, M., Wirth, A., Whisstock, J. and Stuckey, P. (2011). Automatic genera-
tion of protein structure cartoons with Pro-origami, Bioinformatics 27(23): 3315–3316.

Subbiah, S., Laurents, D. V. and Levitt, M. (1993). Structural similarity of DNA-binding
domains of bacteriophage repressors and the globin core, Current Biology 3(3): 141–148.

Szustakowski, J. D. and Weng, Z. (2000). Protein structure alignment using a genetic algorithm,
Proteins: Structure, Function, and Bioinformatics 38(4): 428–440.

Szustakowski, J. D. and Weng, Z. (2003). K2: protein structure comparisons and their statistical
significance, Morgan Kaufmann, San Francisco, CA, pp. 61–86.

Taylor, W. R. (2000). Protein structure comparison using SAP, in D. M. Webster (ed.), Protein
Structure Prediction: Methods and Protocols, Vol. 143 of Methods in Molecular Biology,
Humana Press, Totowa, New Jersey, chapter 2, pp. 19–32.

REFERENCES 185

Taylor, W. R. and Orengo, C. A. (1989). Protein structure alignment, Journal of Molecular
Biology 208(1): 1–22.

Teichert, F., Bastolla, U. and Porto, M. (2007). SABERTOOTH: Protein structural alignment
based on a vectorial structure representation, BMC Bioinformatics 8(425).

Theobald, D. L. (2005). Rapid calculation of rmsds using a quaternion-based characteristic
polynomial, Acta Crystallographica Section A 61(4): 478–480.

Turing, A. M. (1950). Computing machinery and intelligence, Mind 59(236): 433–460.

Unger, R., Harel, D., Wherland, S. and Sussman, J. L. (1989). A 3D building blocks ap-
proach to analyzing and predicting structure of proteins, Proteins: Structure, Function, and
Bioinformatics 5(4): 355–373.

Uniprot, C. (2010). Ongoing and future developments at the universal protein resource, Nucleic
Acids Research 39(Database issue): d214–d219.

Unwin, P. N. T. and Henderson, R. (1975). Molecular structure determination by electron
microscopy of unstained crystalline specimens, Journal of Molecular Biology 94(3): 425–440.

van Laarhoven, P. J. and Aarts, E. H. (1987). Simulated Annealing: Theory and Applications,
Mathematics and Its Applications, Springer, Netherlands.

Velankar, S., Alhroub, Y., Alili, A., Best, C., Boutselakis, H. C., Caboche, S., Conroy, M. J.,
Dana, J. M., van Ginkel, G., Golovin, A., Gore, S. P., Gutmanas, A., Haslam, P., Hirshberg,
M., John, M., Lagerstedt, I., Mir, S., Newman, L. E., Oldfield, T. J., Penkett, C. J., Pineda-
Castillo, J., Rinaldi, L., Sahni, G., Sawka, G., Sen, S., Slowley, R., da Silva, A. W. S.,
Suarez-Uruena, A., Swaminathan, G. J., Symmons, M. F., Vranken, W. F., Wainwright, M.
and Kleywegt, G. J. (2011). PDBe: Protein data bank in europe, Nucleic Acids Research
39(Database issue): D402–D410.

Vesterstrøm, J. (2006). Heuristic Algorithms in Bioinformatics, PhD thesis, University of
Aarhus, Denmark.

Vesterstrøm, J. and Taylor, W. R. (2006). Flexible secondary structure based protein struc-
ture comparison applied to the detection of circular permutation, Journal of Computational
Biology 13(1): 43–63.

Vetter, I. R., Baase, W. A., Heinz, D. W., Xiong, J., Snow, S. and Matthews, B. W. (1996).
Protein structural plasticity exemplified by insertion and deletion mutants in T4 lysozyme,
Protein Science 5(12): 2399–2415.

Vogel, C., Bashton, M., Kerrison, N. D., Chothia, C. and Teichmann, S. A. (2004). Struc-
ture, function and evolution in multidomain proteins, Current Opinion in Structural Biology
14(2): 208–216.

Voronoi, G. (1908). Nouvelles applications des paramètres continus à la théorie des formes
quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs., Journal für die
reine und angewandte Mathematik 134: 198–287.
URL: http://eudml.org/doc/149291

186 REFERENCES

Vriend, G. and Sander, C. (1991). Detection of common three-dimensional substructures in
proteins, Proteins: Structure, Function, and Bioinformatics 11(1): 52–58.

Wagner, G. and Wüthrich, K. (1978). Dynamic model of globular protein conformations based
on nmr studies in solution, Nature 275(5677): 247–248.

Wallace, C. S. (1998). Intrinsic classification of spatially correlated data, The Computer Journal
41(8): 602–611.

Wallace, C. S. (2005). Statistical and Inductive Inference using Minimum Message Length,
Information Science and Statistics, SpringerVerlag.

Wallace, C. S. and Boulton, D. M. (1968). An information measure for classification, Computer
Journal 11(2): 185–194.

Wallace, C. S. and Boulton, D. M. (1969). The information content of a multistate distribution,
Journal of Theoretical Biolology 23(2): 269–278.

Wallace, C. S. and Boulton, D. M. (1975). An invariant Bayes method for point estimation,
Classification Society Bulletin 3: 11–34.

Wallace, C. S. and Dowe, D. L. (1999). Minimum message length and kolmogorov complexity,
The Computer Journal 42(4): 270–283.

Wallace, C. S. and Freeman, P. R. (1987). Estimation and inference by compact coding, Journal
of the Royal Statistical Society. Series B (Methodological) 49(3): 240–265.

Wallace, C. S. and Freeman, P. R. (1992). Single-factor analysis by minimum message length
estimation, Journal of the Royal Statistical Society. Series B (Methodological) 54(1): 195–209.

Wallace, C. S. and Patrick, J. (1993). Coding decision trees, Machine Learning 11(1): 7–22.

Walle, I. V., Lasters, I. and Wyns, L. (2005). SABmark—A benchmark for sequence alignment
that covers the entire known fold space, Bioinformatics 21(7): 1267–1268.

Wang, L. and Jiang, T. (1994). On the complexity of multiple sequence alignment, Journal of
Computational Biology 1(4): 337–348.

Westbrook, J. D. and Fitzgerald, P. M. (2009). The PDB format, mmCIF formats, and other
data formats, in J. Gu and P. E. Bourne (eds), Structural Bioinformatics, John Wiley and
Sons, chapter 10, pp. 271–291.

Westbrook, J., Ito, N., Nakamura, H., Henrick, K. and Berman, H. M. (2005). PDBML: the
representation of archival macromolecular structure data in XML, Bioinformatics 21(7): 988–
992.

Westhead, D. R., Slidel, T. W. F., Flores, T. P. J. and Thornton, J. M. (1999). Protein
structural topology: Automated analysis and diagrammatic representation, Protein Science
8(4): 897–904.

Wetlaufer, D. B. (1973). Nucleation, rapid folding, and globular intrachain regions in proteins,
Proceedings of the National Academy of Sciences. USA 70(3): 697–701.

REFERENCES 187

Wheelan, S. J., Marchler-Bauer, A. and Bryant, S. H. (2000). Domain size distributions can
predict domain boundaries, Bioinformatics 16(7): 613–618.

Wolfson, H. and Rigoutsos, I. (1997). Geometric hashing: an overview, Computational Science
Engineering, IEEE 4(4): 10–21.

Xu, J. and Zhang, Y. (2010). How significant is a protein structure similarity with TM-score
= 0.5?, Bioinformatics 26(7): 889–895.

Yang, Y., Zhan, J., Zhao, H. and Zhou, Y. (2012). A new size-independent score for pairwise
protein structure alignment and its application to structure classification and nucleic-acid
binding prediction, Proteins: Structure, Function, and Bioinformatics 80(8): 2080–2088.

Ye, Y. and Godzik, A. (2003). Flexible structure alignment by chaining aligned fragment pairs
allowing twists, Bioinformatics 19(suppl. 2): ii246–ii255.

Zemla, A. (2003). LGA: a method for finding 3D similarities in protein structures, Nucleic
Acids Research 31(13): 3370–3374.

Zhang, Y. and Skolnick, J. (2004). Scoring function for automated assessment of protein
structure template quality, Proteins: Structure, Function, and Bioinformatics 57(4): 702–
710.

Zhang, Y. and Skolnick, J. (2005a). The protein structure prediction problem could be solved
using the current PDB library, Proceedings of the National Academy of Sciences. USA
102(4): 1029–1034.

Zhang, Y. and Skolnick, J. (2005b). TM-align: a protein structure alignment algorithm based
on the TM-score, Nucleic Acids Research 33: 2302–2309.

Ziv, J. and Lempel, A. (1978). Compression of individual sequences via variable-rate coding,
Information Theory, IEEE Transactions on 24(5): 530–536.

Zotenko, E., Dogan, R. I., Wilbur, W. J., O’Leary, D. P. and Przytycka, T. M. (2007). Struc-
tural footprinting in protein structure comparison: the impact of structural fragments, BMC
Structural Biology 7(53).

Zu-Kang, F. and Sippl, M. (1996). Optimum superimposition of protein structures: ambiguities
and implications, Folding and Design 1: 123–132.

188 REFERENCES

Appendix A

List of randomly selected SCOP
heirarchy domains

Benchmarking of various alignment programs on a dataset containing 2500 structural domain
pairs selected randomly from SCOPe domain database (Fox et al., 2013). No two domains in
the dataset share more than 40% sequence identity.

The dataset is identified using the following procedure. SCOPe (Fox et al., 2013) version

1.75B domains are used and separated out into buckets depending on their sizes (number of
residues). Two domains in the same bucket differ no more than 50 residues in their lengths.
The SCOP hierarchy for all the domains within each bucket is recorded. A pivot domain is
randomly chosen from the entire SCOPe collection. Assume that this pivot domain falls with
the i-th bucket. Using the SCOP (Murzin et al., 1995) hierarchy in this bucket, we select (at
random):

� one domain that belongs to the same SCOP Family as the pivot

� one domain that belongs to the same SCOP Superfamily as the pivot, but not the Family

� one domain that belongs to the same SCOP Fold the pivot, but not the Family or Super-
family.

� one domain that belongs to the same SCOP Class the pivot, but not the Family, Super-
family or Fold.

� one domain that belongs to a different class (a Decoy domain).

This selection process is repeated until we have 500 distinct pivots and their respective five
domains. This results in 2500 distinct structural domain pairs from 3000 unique domains. A
table containing a list of the SCOP identifiers for these domains can be found overleaf.

189

190 APPENDIX A. LIST OF RANDOMLY SELECTED SCOP HEIRARCHY DOMAINS

Pivot Family

Super

Family Fold Class Decoy
d2d0oa3 d2d0oa2 d2i7na2 d1ekea d1pn0a2 d1rqga1

d2c5lc1 d1k8rb d1j0ga d3ge3c d2grga1 d1bcoa1

d1f5ma d2o9ca1 d2o9aa d1l3la2 d2gtia2 d1ig3a2

d1c8na d1f2na d1za7a d1m06g d1dq3a1 d1t35a

d2ah2a2 d1so7a d3b7ea d3amra d1f8v.1 d1kbla3

d2pida d3tzla d2d5ba2 d1ct9a1 d1xhba2 d2o6xa

d1pgua2 d1nr0a2 d3uvka d1jtdb d1jeya1 d2hyec3

d1zj8a2 d2akja2 d3mmca2 d1s99a d2nrka1 d1u5ka2

d1gaia d2fbaa d1h54a1 d1x9da1 d1qsaa1 d3qoma

d1e4mm d1uwsa d1uoka2 d1reqb1 d1miob d1vdka

d1pgua1 d2ovrb2 d2pbib d1utca2 d2c3fa1 d1wu7a2

d1mn3a d2di0a1 d1wiva d1eija d3ag3h d2fa8a1

d1gjwa2 d1g5aa2 d1gqia1 d1eexa d1hk8a d2p0ma1

d2piaa1 d1tvca1 d1i8da2 d2dy1a1 d1so9a d2azea1

d2f9wa1 d2f9wa2 d2bh1a2 d1p90a d2ioja1 d1hc1a1

d3mmsa d3nm6b d1ybfa d1vhoa2 d1qwja d1x2ga2

d2d29a1 d1siqa1 d1w07a2 d2pnra1 d1pprm1 d1xqba

d1jaka2 d2gjxa2 d1l8na2 d1oz9a d1j5ya2 d1kyqa2

d1n7oa1 d1x1ia1 d1qaza d2sqca1 d1aora1 d1rrma

d1q90b d1ppjc2 d1kqfc d1y5ic1 d1rwta d1t3ta7

d1x58a1 d1akha d1gv2a2 d1k6ya1 d1utca1 d2ciob

d2iiza d2gvka1 d2cb2a1 d2i0ka1 d1jl0a d2nzwa1

d1djqa1 d1gtea2 d3krua d1tj1a2 d1woha d1v5va2

d1m65a d2anua1 d1v77a d1v6ta d1wyza1 d1v9ka

d1nupa d1k4ma d1jhda2 d2c5sa1 d3zqua d2jmua1

d2ax3a1 d1kyha d3pzsa d1o5za2 d2z6ra d1llaa2

d2fhfa3 d2j43a1 d1ac0a d2h6ua d2qazd d2w6ka1

d2ywxa d3rg8a d1qcza d1tlla2 d2j07a2 d2avue1

d1j8ia d1nr4a d1zxta d2cs7a1 d1hv2a d1i8na

d1r17a1 d1n67a1 d2bcma d1x9la d1wjxa d1x75a1

d1ecfa2 d1q15a2 d1gk9.1 d2ntka1 d3f5vb d1vf7a

d2zbla d1fp3a d1h12a d1w6ka1 d1ux5a d3o83a

d1p28a d3cz1a d3k1ea d2ciwa1 d1jr3d1 d1wj4a

d3buxb1 d1h8ba d1k9ua d1iioa d1c75a d1lnqa2

d2cw9a1 d2fxta1 d2rfra1 d1x9ya2 d1ae9a d1aoca

d2gu2a1 d1yw4a1 d1r3na1 d1c8ba d1lara1 d1svba2

d1ugka d1wfma d3kwua1 d1dcea2 d2f9ha1 d1gg3a1

d2go2a d3iira d1wbaa d2vxti d2edma1 d1evya2

d1l0wa2 d1c0aa2 d2p8ta2 d1ru0a d2uubc2 d1ux6a2

d2ljra2 d2c4ja2 d2b5ea2 d1qmha1 d1hf2a2 d1b67a

d2qima d2wqla d2il5a1 d1xsza2 d1odha d1k3ra2

d1hx0a2 d1wzaa2 d1qbaa3 d1a0ca d3k40a d1zhxa

d1q15a1 d1kqpa d2e18a d2a84a d1vpta d1rrka1

d1sefa d1sq4a d1xrua1 d1w9ya1 d1upsa1 d1g5ga1

d3t4na d2qrda d3osea d1q9ua d2c4ba1 d2gqfa2

d3g2sa d1dvpa1 d1hf8a2 d1k8kg d2euca1 d1kafa

d1allb d1b8da d3pt8a d1gtea1 d1y9ia d2ra5a1

d1b34a d1d3bb d2rb6a1 d2f5tx1 d2pu9b d2vv5a3

d1ws8a d2ux6a d2dyrb1 d1kzqa1 d1lcya1 d2yx6a

d2c35a1 d1y14a d1yt3a1 d1m6ya1 d2au5a1 d2nmla1

d2pfsa d3hgma d1tq8a d1coza d1p5dx1 d1zata2

d2dkla1 d1vega d1wgla d1ufza d1g8qa d1mk0a

d3i3qa d2iuwa1 d1nx4a d1sfna d2vhka d2qfia2

d1h4ra2 d1mixa2 d2v76a d1ywya1 d1tg7a1 d1gg4a3

d2spca d1u5pa1 d3f31a d1xdpa1 d2e9xa1 d2cr9a1

d1l2ha d2ilaa d2fdbm1 d1n4ka2 d1js8a2 d2b8ea1

d3hyfa d1zbfa1 d1cxqa d2wfba d1i7na1 d1ppjc1

d3ea1a d2plca d2zkmx4 d1vpqa d1q74a d1lsha2

d2dg1a d1pjxa d2p4oa1 d1ofza d1vq8b1 d1ryoa

d2cg5b d2jq4a1 d1dnya d1qrjb1 d2nn4a1 d1h75a

d1bx7a d1skza1 d2pw8i d2g81i1 d1e8ra d2clyc

d1vjxa d1jiga d2ib0a1 d2idxa d1wija d1n8yc4

d1t0ia d1rtta d2z98a d1pjca2 d2cc0a1 d1tkea2

d1e8ga1 d1wvfa1 d1w1oa1 d1hbna2 d1u8xx2 d1sr8a

d1oiha d3pvja d2r6sa d1zx5a1 d1ja1a1 d2q0ta1

d1l1oc d1xjva2 d1je5a d3q46a d1n67a2 d1z9ha1

d1aym3 d1qqp3 d3cjib d1hx6a1 d2pbka d1b5ea

d1ehia2 d1iowa2 d1eucb2 d1s68a d1sawa d2p62a1

d3u5wa d3ec6a d2hq7a1 d2rdea1 d1f39a d1p5dx3

d1y7ba2 d3cu9a d1vkda d1s1da d1jeyb1 d1taza

d1pbyb d1jmxb d1l0qa2 d2ebsa2 d2bbva d3arca

d1wdpa d1bf2a3 d1wcga1 d1ntha d2impa d1rt8a

d2tbva d1opoa d2mev1 d1vpsa d1qexa d2elba1

d3mmha d1ysqa d1mc0a2 d2p7ja2 d2hiya1 d2yvxa3

d1yfua1 d1zvfa1 d1ylla1 d1s4ca d3qzra d2hxva1

d3dssb d1n4qb d1hzfa d1gxma d2ebfx1 d2ae0x1

d2hbva1 d2gwga1 d1ra0a2 d2ejaa d1w36c3 d1snza

d1v8ca1 d1vjka d2hj1a1 d3fila d1xmta d2ayda

d1auya d1ddla d1qqp1 d2bpa2 d2nqra2 d1ui0a

d1kq1a d2ylba d1ycya1 d1zq1a1 d2xcmc d1kg1a

d1h8la1 d1uwya1 d2b59b2 d1vema1 d2hf1a1 d1t3ua

d2zjda d3d32a d1wfya d3ah7a d2ae6a1 d1rhsa1

d1juha d2h0va d2phda1 d2fcta1 d2piga d2zhja

d2g0wa1 d2q02a1 d1yx1a1 d1jz8a5 d1u6ka d3rlfg

d2chua1 d2wi8a d1pq4a d2xvya d1zmba1 d3prna

d2csba2 d2csba1 d2a1ja1 d1yt3a2 d1ykha1 d1g4yb

Pivot Family

Super

Family Fold Class Decoy
d1l9xa d1t3ta2 d1n57a d1li4a2 d2g5gx1 d1rh1a1

d1ybea1 d1vlpa2 d1ytda1 d1b5ta d3kqsa d2ijra1

d2hjsa2 d2cvoa2 d1h6da2 d2gvia1 d1hzta d1na6a1

d2pcsa1 d2ns9a1 d1t17a d1f46a d2pnra2 d3cx5g

d1qypa d1tfia d1yuaa1 d1wgea1 d1eyfa d2f69a1

d1ixta d1omca d1c6wa d1m1xb5 d2fc6a1 d1m93.1

d1n8yc2 d3b2ua1 d1w8aa d1ds9a d1ja1a3 d2idba2

d1kloa2 d1kloa1 d1egfa d1uoya d2dkta1 d1wkta

d3bwuc1 d1p5va1 d2bvua d2dpka1 d1ut7a d1qvea

d2ba0a2 d2nn6i2 d1v8qa d1bdoa d1o9ya d1j2la

d1vh6a d1orja d3iqca d1t6ua d1p22a1 d1adua3

d1iqza d1fxda d2fdna d1ffgb d3cjsb1 d1iiea

d1saza1 d1g99a1 d2fsja1 d1wb9a3 d1q3qa2 d1sk7a

d1qxma1 d1ggpb2 d1dqga d2p39a d1yrka d2hxva2

d1uw4b d1hu3a d1t06a d3efza1 d2fm9a1 d1vl2a2

d2vxxa d2c41a d2gyqa1 d2g38b1 d1d2zb d1tlja

d1ckma2 d1p16a2 d1a0ia2 d2nu8b2 d1r55a d1jx4a2

d1rtqa d1fnoa4 d2q7sa1 d2gfqa1 d2b9ea1 d2alaa2

d1jbea d2jbaa d1y7pa1 d2y71a d1dzfa1 d2fug61

d1ecaa d1q1fa d2xkia d1nekb1 d1tj1a1 d2veaa3

d1a3qa2 d1bvoa d1t4wa d1e2wa1 d1gwya d1r0da

d2vc7a d3pnza d2imra2 d3blda d2bi7a1 d1tvfa2

d1vema2 d1ji1a3 d1uuqa d1olta d1x3la d1g6sa

d1a9xa5 d1w96a3 d2io8a3 d1xdna d1v4aa2 d3hlxa

d1es9a d2hsja1 d1z8ha d2uubb1 d2yyba d1n1ba1

d2etja1 d1i39a d1bcoa2 d2fxua2 d1ooya1 d1vdwa

d2gu3a1 d2gu3a2 d3imab d1ugia d2ywqa1 d1ppjf

d1a9xb2 d1gpma2 d1fyea d2o14a2 d1j3ba2 d1zt2b1

d3fsaa d2ov0a d1hfua1 d1kzqa2 d3qe1a d1t3qc1

d2ab0a1 d2fexa1 d1p80a1 d2c4wa d1rqpa2 d1kxua1

d3hh8a d1toaa d3cx3a d2xwpa d3ijwa d1p0ya2

d1vk0a d3mxma d1kcfa2 d3ezwa2 d2fug12 d1j77a

d2f2ha4 d1zy9a2 d2choa2 d2f7fa1 d2olra1 d1ylea1

d1r85a d1qw9a2 d1kfwa1 d1muwa d1zmra d2g5da1

d1tx2a d1eyea d2ycix d1ykwa1 d2c42a4 d1h9aa2

d2i1qa1 d1szpa1 d1u9la d1a0pa1 d1smye d2dkta2

d1vl2a1 d1gpma1 d1efva1 d1od6a d1wpna d1igra3

d1g7sa1 d4ac9a2 d2f1la2 d1qfja1 d1v76a d1t50a

d1l5pa d1czpa d1rm6c2 d1tifa d1wiba d1o7d.2

d1o7fa3 d1i5za2 d1ft9a2 d1vj2a d1ra0a1 d2pu9a

d1igra2 d1n8yc1 d1koha1 d1io0a d2xbla d2i5ha1

d2dixa1 d1di2a d1pkpa2 d1dq3a2 d2hg7a1 d1adua2

d2cp8a1 d1pgya d1v92a d1bvsa1 d2izva1 d1ehkb2

d1m1fa d1ub4a d3hpwa d1ng2a2 d1jlya2 d1m9za

d1bd8a d1awcb d3twra d1lm5a d1x9za d1nuia1

d1y7ea2 d1y0ya3 d2odfa1 d1boub d1p9ag d1okca

d2v0na2 d1s8na d1qo0d d1vi6a d2jaqa d1n08a

d1jwqa d1xova2 d1q7l.1 d2ptha d1okga1 d1v4pa

d2vaca d1vkka d2fh1a3 d2gnxa2 d2fufa d1pjqa3

d1fx7a3 d2h3ja1 d1igqa d1xyia d1nh2d2 d1qzma

d1z84a2 d1z84a1 d1vlra1 d2r7ja1 d3h0na d1vmoa

d1twfi2 d1pfta d1yuaa2 d1pd0a5 d1wvka d1ojha

d1ks8a d1clca1 d3p2ca d2g0da d2o6ia1 d1rh5a

d1pfsa d1gvpa d1n9wa1 d2exda1 d2cmea1 d2ct5a1

d1zc6a2 d1zbsa1 d1e4ft1 d1hjra d2ftsa3 d2nr9a1

d1ex2a d2amha1 d1u14a d1w94a1 d1kjna d1r8ia

d1nf4a d1vlga d2itba1 d2g2da d1r4va d1vq8w1

d1piia2 d1i4na d3gdla d3a5fa d2v03a d1s7ja

d2daqa1 d3qbya d2jnga1 d2do3a1 d1sddb1 d2d1pc1

d1g8ka1 d2jioa1 d3ouga d1n10a2 d1g86a d3m5ra

d1h9ka1 d1h9ra1 d1guta d2oq0a1 d1okia1 d2oeea1

d1cida2 d2d9qb1 d1rhfa1 d1cvra1 d1uz5a1 d1vcca

d1s28a d1xkpb1 d3epua d2od0a1 d1ckva d1cqxa3

d1pyfa d1us0a d3n6qa d1ec7a1 d1nd6a d1yvra1

d3bpse1 d1lmja1 d2j5ha1 d3b2ua2 d2i9wa3 d1y43.1

d1t6ca1 d1u6za2 d1woqa2 d1pv9a1 d1gg4a1 d1ikpa3

d1edqa2 d1goia2 d1jaka1 d2qapa1 d1yvua2 d3ivra

d2bgwa2 d1j24a d1y88a2 d2gw6a1 d2hy5c1 d1hn6a

d1j30a d1yuza1 d2oh3a1 d1niga d2f2ab1 d1kf6d

d1zh8a2 d1tlta2 d1drua2 d1ygya4 d2fbda d1sfpa

d1tdja3 d1tdja2 d2bj7a2 d1iwga1 d1t95a2 d1luaa2

d2ejqa1 d3e11a1 d1c7ka d1nowa2 d1dm9a d1jhna3

d1uoca d2d5ra1 d1w9ha1 d1k8ka2 d1sa3a d1v0wa1

d1sfsa d1jfxa d2waga d1vhca d2pw6a1 d1lfpa

d1vq8t1 d2j01y1 d2j01t1 d1i1ja d1olma2 d2nllb

d1q0qa3 d1j5pa3 d1lc0a2 d2glza1 d2cs0a1 d1qb2a

d1v5da d1kwfa d1nc5a d1r76a d3m5qa d1y4wa2

d1em2a d1ln1a d2de6a2 d2fpna1 d1m1la d1jm1a

d1g4ma2 d1g4ma1 d4a02a d3e9ua d1bd7a d2ieaa3

d3bw6a d1ifqa d2j3wa d3nula d1ewqa4 d1kf6c

d1hxva d1jnsa d1okga3 d3eipa d1wiha d1j6ua1

d1op4a d1l3wa3 d1u2ca1 d1ej8a d3czza d1z8ga2

d1ysja1 d2q43a1 d1de4c3 d2a8ya d1hi9a d1nh1a

d2fr5a d1r5ta d1vk9a d1oi0a d3clsd2 d2apla1

d2i9aa1 d1szba2 d1lr7a1 d1cbha d3coqa1 d1e3ha4

d1gxqa d1ys7a1 d1fc3a d1r71a d1or7a2 d1wira

191

Pivot Family

Super

Family Fold Class Decoy
d2ccma d2hpsa d1sraa d2ciwa2 d2z16a d2ia1a1

d1m7xa3 d1lwha2 d1x38a1 d1m7ja3 d1zq1a2 d2zbxa

d1th5a1 d1veha d3cq1a d1ib8a2 d3dnja d1nkza

d1v5ta d1v86a d1wz3a1 d1wmha d2p7ja1 d1n7da7

d1eu3a1 d2z8la1 d1c4qa d1bkba2 d1gh5a d1a79a2

d1h6ka1 d1h6ka3 d1xqra1 d1ouva d2es4d1 d1u8va2

d2bkya d2bkyx d1vm0a d3faua d1jg5a d1ti6b1

d1ckaa d3rnja d2v1qa d1vbva1 d1v1ha1 d2ewla1

d1gsoa1 d1vkza1 d1e2wa2 d2pnrc1 d2ccva1 d2djaa1

d1od5a2 d1lrha d1x82a d1yoxa1 d2brja1 d1m4ua

d1nh2a2 d1nh2a1 d1mpga2 d1v8ca2 d2jdqd d1tpga2

d1geqa d3nz1a d1znna1 d1xi3a d2ieaa1 d2ozbb1

d1s69a d2gkma d3mkbb d1kf6b1 d2eiaa2 d1pc6a

d1l6xa1 d1l6xa2 d1fo0b d2qfra1 d1ou8a d1rmja

d1d7qa d1jjga d1twfh d3chbd d1whia d2p0sa1

d1w5qa d1ohla d3dz1a d1r30a d1j7xa d1ta8a

d2y5fl d2bz6l d1kloa3 d1t0za d1xjha d1l7ba

d1gdta1 d1ijwc d1x41a1 d3cjrb1 d2erla d1zlhb1

d3e6sa d3ak8i d2z90a d3ci3a d3brja1 d1d4oa

d1xc3a2 d2hoea2 d1t6ca2 d1jl1a d1knxa2 d1lshb

d1iyjb4 d1ue1a d1b8aa1 d2k5wa1 d1oa8a d1tx9a1

d2pg3a1 d3rk1a d1wy5a1 d1g8fa2 d2wqka d2o34a1

d1efub3 d1xb2b1 d1oaia d1ixsa d2oy9a1 d1l6ja3

d1vyqa1 d2bsya2 d3p48a d1tula d2hrva d1em8b

d1q3ja d1dkca d1c4ea d1hyka d2pf1a2 d1ugx.1

d1hxma2 d1uvqa1 d3kvqa d1yq2a2 d2jn9a1 d1f81a

d1ytda2 d1qpoa2 d1vlpa1 d1fm0e d1puca d1abva

d3oeqa d1ew4a d2fug71 d1sgoa d1u58a2 d3dtub2

d2et1a d1od5a1 d1oi6a d1pg6a d2f2ha2 d1e12a

d3atya d3l5la d1q45a d4ubpc2 d1xmxa d3c0na2

d3qz6a d2vwsa d1m3ua d3mu7a d1nbaa d2bs2c

d1ji7a d1sv0c d1dxsa d1y88a1 d1ny9a d2btia

d1a8pa1 d1fdra1 d1hzea d2ey4c1 d2dlba1 d3cx5f1

d1myna d1ozza d1fjna d1lu0a d1bbga d1t1ra3

d1lkoa2 d1yuza2 d1vzia2 d1zina2 d1sopa d1iyjb2

d3nxba d3u5la d3d7ca d1v9va1 d3ryce d2p02a3

d2ozja d3hqxa d2pa7a1 d1wpga1 d1m5q1 d2h5na1

d1rx0a1 d2c12a1 d1w07a1 d1xg2b d1bg1a1 d1lg7a

d1p1xa d2a4aa1 d1vlia2 d1uasa2 d1zcza2 d2ffja1

d3ctaa2 d2vbua d1mrza1 d1cqxa2 d1wkaa1 d2i76a2

d1k66a d1a2oa1 d1r8ja2 d1t1ja d1hc7a1 d1u61a

d2fh5a1 d1nrja d2vglm1 d2a2la1 d1oo0a d2fyga1

d3bzka1 d3bzka2 d2csba3 d1ci4a d1ujsa d1lpva

d1ezwa d1rhca d1luca d1tz9a d1xvxa d1mtp.1

d1ufaa1 d2b5dx1 d3bvua1 d1nu9c1 d1t3wa d2nn6h3

d2j5ya d1xvha1 d3qwoc d1gvna d2f66c1 d1auua

d1nh8a2 d1h3da2 d3dfea d2e29a1 d1xhca3 d2huec

d1fsea d1l3la1 d1opca d2oa4a1 d2ahma1 d2cu2a1

d2ch5a2 d1zbsa2 d2i7na1 d2uubk1 d1pdoa d2okua1

d1ew0a d1v9ya d2gj3a d2inwa1 d2hnga1 d1mdal

d1jmva d1mjha d2duma d1dlja3 d2q07a2 d2f0ca1

d1ft9a1 d2zcwa1 d1u5tb2 d1w0ua d2dt6a1 d1y8xb1

d1jbja1 d1n26a1 d2nxyb1 d2je8a2 d2b97a d3pc7a

d2vo8a1 d1aoha d1exha d1ayoa d2geca1 d1rewa

d1gp6a d1odma d1ds1a d1qwra d3liza d1srqa

d1y1la d1jf8a d2wmya d1iiba d1m0wa1 d3n90a

d1jgta1 d1xnga1 d1efvb d3mxta d1q1aa d1uyja

d1xbia1 d1zwza1 d1dt9a2 d3c9ua1 d2hc5a1 d1jkea

d4av5a d2j2zb1 d1amxa d2dewx1 d1f35a d1yb3a1

d1ugla d1ayja d1pe4a d1wqjb1 d1ha8a d2oo2a1

d1b9ra d1doia d1kf6b2 d2gria1 d2bwka d2oara1

d1bupa1 d1e4ft2 d2fsja2 d1chma1 d2bfwa1 d3gp6a

d1zcca1 d1vd6a d3no3a d1ct5a d2btoa1 d2vdfa

d2xbta d2wnxa d1qbaa2 d1f0la1 d2p5zx2 d1f0la3

d1ag7a d1cnna d1lmra d1oiga d1k81a d1biaa2

d2gdqa1 d1kkoa1 d2akza1 d1vcfa1 d3riya d2yaya

d1qzga d1kxla d1fl0a d2f4ia1 d1jlya1 d1pfva1

d1p1ma2 d2paja2 d2icsa2 d3taob d1m3ka1 d1wb9a1

d1wgpa d3e5ua2 d2bgca2 d3bb6a1 d1pm4a d2fefa1

d1f7da d2bsya1 d2xcea d4ubpb d1zrua3 d3kxsa

d1b24a2 d1b24a1 d1dq3a3 d3bp3a d1i3ja d1adua1

d5nula d1f4pa d1rlja d1mx3a2 d1lk5a1 d1qqha

d1vi7a2 d2cvea2 d1t95a3 d3iwla d1tiga d1g8ea

d2b3ra d3fbka d2yrba1 d2huha1 d1ti6a1 d1vlba1

d2bhua3 d1h3ga3 d1ug6a d2qeea d1lnsa3 d3kcgi

d3cnqp d1v5ib1 d1kn6a d1h98a d1pu1a d2iuba2

d1mb6a d1y29a d1xi7a d1m1xb4 d1mkca d2hjqa2

d2ig3a d2zs0b d1dlwa d2bs2b1 d1nxha d1nekd

d2buda1 d2f5ka1 d3m9qa d2diga1 d1kjqa1 d2gpia1

d1vcaa1 d1zxqa1 d1fhga d1ifra d2anea1 d2rsla

d1ueba1 d1khia1 d1vq8q1 d2dy8a1 d1r5ba2 d2cqea1

d1e5da1 d1oboa d2arka1 d2naca2 d2phpa1 d1xeoa

d1wyxa d2o9sa d1i07a d2eyqa1 d1s98a d1vmga

d3ebta1 d2geya1 d1nwwa d1iq8a4 d1jida d1nc7a

d2cosa1 d1dv0a d1otra d1sr9a1 d1rqta d1x4sa1

d1svba1 d1ok8a1 d2bvya1 d2q3za3 d2mev.1 d3hmsa

Pivot Family

Super

Family Fold Class Decoy
d1nyca d1oh1a d1smpi d2gtln1 d3kt9a d2f1ra

d2qypb d1l9la d3bqpa d1o82a d1m1eb d3qmxa

d1oz2a2 d1oz2a1 d3flga d1ixda d2f2ha1 d1igra1

d3br8a d2bjda d1urra d1u0sa d2ffga1 d1l8ca

d1nekb2 d3c8ya2 d1xlqa d2byea1 d2hg6a1 d1o70a1

d1b4fa d1pk3a1 d3bs5b d1doqa d2c9wa1 d2bskb1

d1yrra2 d1o12a2 d2ffia1 d1ur3m d1v7za d1slqa

d2g9wa1 d1sd4a d1bm9a d1igna2 d1iq0a1 d1v2ba

d1yuda1 d1xe7a d1ep0a d1o7fa2 d1pkha d1n8yc3

d1ecea d1edga d1kwga2 d1iq8a1 d2ozla1 d3n2wa

d1h6ga1 d1t01a2 d2b0ha1 d1k04a d1tf5a1 d1xo1a2

d2nrha2 d3bexa2 d1okja2 d1o13a d1t3ka d2q7ra1

d1mqva d1s05a d256ba d1gs9a d1lkoa1 d1jfla2

d1kmta d3t5gb d1s6na d2nqda d1dkza2 d1xjca

d1dfca4 d1dfca1 d1hcda d1pwaa d2ofca d1zzwa

d1odza d1rh9a1 d1tg7a5 d1dosa d1ir6a d2d0ta1

d1rl2a2 d3bzka4 d1k3ra1 d2hd3a1 d1vlia1 d2hfqa1

d1u0la1 d1vq8a2 d1woca d2k5qa1 d1zgha1 d1t1va

d1th7a1 d1d3ba d2vxfa1 d1ib8a1 d1fc6a3 d2x1wa

d1vcoa1 d1k9vf d1vhqa d3f6ya d2bw0a2 d2uubd1

d2ja9a1 d2ba0a1 d1u5ka1 d2p5zx1 d1nqja d1ybza1

d1piea2 d1wuua2 d1kvka2 d1qd1a1 d1t3ta3 d1ii2a2

d1p4ua d1gyva d2g30a1 d1m1xa2 d1jb3a d2pv4a1

d2crga1 d2cqqa1 d2aqfa1 d1twfj d1x3aa1 d1iowa1

d1pula1 d1wlma1 d1eg3a1 d1c3za d1r8ea1 d1sf8a

d1u1ja1 d1u1ja2 d1r3sa d2nlia d1yovb d2v09a

d1rzfl2 d1fp5a2 d1oaql d1cwva3 d3ivva d1uz5a3

d3k1sa d3l8ra d2e2aa d1neka1 d1kv9a1 d1mi8a

d1iufa1 d1hlva1 d1irza d1rp3a1 d1xl3c1 d3ag3i

d1ujpa d1nsja d1yxya1 d2tpsa d1uana d1omra

d1w9pa1 d1jnda1 d1nowa1 d3n3ma d1xkua d1wd3a1

d1l0oc d1or7a1 d1smyf1 d1sfea1 d2qalt1 d1se0a

d3ktoa d3c3ma d1dz3a d1ykga1 d2ozlb2 d1zbdb

d3psma d4aaza d1n8ma d1gl4a2 d2fcwb1 d1nh2b

d1sisa d1pvza d1mm0a d1i8xa d1sh1a d1pnb.1

d2byca1 d2iyga d2hfna d2qlxa d3ci0k3 d1qjpa

d1vd4a d1dl6a d1wiia d1pg5b2 d1vzya2 d1pj5a1

d2bhua1 d1ulva2 d3rgha d1f00i1 d2qs8a1 d1z60a1

d3c2wa3 d2oola2 d1ll8a d3cpta d3ksva d3ft1a

d2dmba1 d1qfha2 d2q0zx2 d2vzsa1 d3hcga d1sqga1

d1wi5a d1jt8a d3ersx d2ch4w1 d1zata1 d1jb0d

d1nz6a d1iura d2o37a d2ca5a1 d1hp8a d2jfga1

d1a17a d1hh8a d2hr2a1 d1wy6a d1ilea1 d3iwta

d1zunb1 d1xe1a d1sqra d1kzla1 d1f1sa3 d1mgta2

d1tqga d1i5na d1sr2a d1nlxa d1seda d1vq8y1

d1ug3a1 d1h6ka2 d3b7sa1 d1r8se d3b57a1 d1nyoa

d1nofa2 d2v3ga d2aama1 d2wzma d1c0pa1 d1qmga1

d1rhfa2 d1ev2e2 d2oz4a1 d1cwva2 d2pp6a1 d2qsba1

d1on2a1 d2isya1 d2hoea1 d1vz0a1 d2bw3a1 d2dbsa1

d1tyya d1vk4a d2c4ea d1p9oa d1wht.1 d2ddra1

d3kucb d1lfda d1i42a d1nyra2 d1neia d1vhoa1

d1kgsa1 d2ff4a1 d1p4wa d1e3ha1 d1sknp d1j8ba

d1d0na3 d1kcqa d2xfaa d2qtva4 d3mjza d1ez3a

d1yo5c1 d1puee d1b6aa1 d1mgta1 d1vmaa1 d1uc8a1

d1iuja d1tz0a d1tuva d1iwga3 d3kpba d1ijya

d2uubq1 d2nn6i1 d3kdfb d1k28a1 d2fhfa4 d1j6ua2

d1nr0a1 d1nexb2 d1yfqa d1ri6a d1n7za d1zroa2

d1bqca d3emca d2oxna d1lqaa d1tuga1 d1ujna

d1sfxa d2d1ha1 d2gmga1 d1l8qa1 d1jr3a1 d1p5dx2

d1t0aa d1iv3a d3b6na d3byqa1 d1vbka2 d2hqva1

d2c42a5 d1jnrb d1xera d1kkha2 d2quda d1q5za

d1ub9a d2a61a1 d1u5ta1 d1whua d1q06a d1qcsa2

d2qlvb1 d1z0na1 d2nqca1 d2a4ca d1sg5a1 d1vioa2

d1krha1 d2bmwa1 d1kzla2 d2c78a1 d1hdfa d1hh2p4

d1rqba2 d1sr9a2 d1of8a d1j93a d3lnla d1xfia

d1joga d1wtya d1o3ua d2mhra d2enda d1usub

d1jmca1 d1wjja d3irba d1enfa1 d2vsmb d2clya1

d2e1za2 d1saza2 d1ig8a1 d2f96a1 d2pyya d2biba1

d1zzma1 d1yixa1 d1xrta2 d1twia2 d1huxa d4geva

d2g9hd1 d1v1oa1 d1prtf d2z1ca1 d1gmua1 d2isya2

d1jcfa1 d2fxua1 d2hoea3 d1qtma1 d1nula d1ug7a

d2al3a1 d2cr5a1 d2bwfa d1wxqa2 d1nija2 d1k1fa

d2c60a1 d1oeya d1c9fa d2fug13 d2fdoa1 d2qklb1

d3iara d2pgfa d1itua d1ur4a d3bvua3 d2ix0a4

d1a6ca3 d1a6ca2 d1f15a d1yi9a1 d1pd0a2 d2q4ma1

d1p0za d3by8a d2basa2 d3cptb d1ycsb1 d1dcqa2

d1gria1 d1gl5a d3iqla d1w7ja1 d2hnua d1we9a

d2dvta1 d2f6ka1 d2i9ua2 d3igxa d1dc1a d2wjnm

d1clca2 d1ji1a1 d2oxga d3qzba d1slua d2qfaa

d1u9ca d1qvwa d1t0ba d1ydga d1vr0a1 d1mw7a

d1se9a d1v2ya d1wxaa1 d1l4db d2pbdp d1i3oe

d1a9xa6 d1vkza3 d2r85a2 d1x9na3 d1wdua d3btaa2

d1p5qa1 d1ihga1 d2ff4a2 d1bpoa1 d1k8ke d1q90d

d2bcqa2 d1jmsa3 d3arcu d2h80a1 d3hqaa d2i4ra1

d3l18a d2rk3a d1kwga3 d1rlia d1tfra2 d1xs1a

d1qnra d1h1na d1fcqa d3bofa2 d1xfka d1rq0a

192 APPENDIX A. LIST OF RANDOMLY SELECTED SCOP HEIRARCHY DOMAINS

Pivot Family

Super

Family Fold Class Decoy
d1nu0a d1vhxa d3bzka5 d1ewqa3 d1e0ta3 d2p02a2

d3clsd1 d1efpa1 d2gm3a1 d3mlaa d1bi5a2 d1rqba1

d3eb2a d3s5oa d3oexa d3bofa1 d1rkqa d1te5a

d2ewca1 d1qu9a d1ufya d1ipaa2 d1wpua d1c1da2

d1cnva d1edta d2uy2a d1xg4a d1wcwa d1k92a2

d1cpza d3cjkb d2xmwa d2x3da d3l7ha d3arcz

d3dc7a1 d3bzwa1 d1k7ca d1x38a2 d2x61a d1xa1a

d2vn6a d3bwza d3zuca d1p7hl2 d2fr2a1 d1ohta

d1d4ba d1f2ri d2npta1 d2bvca1 d1e3ha3 d2j01u1

d1qhoa1 d1h3ga1 d1im3d d1l0qa1 d1h6wa1 d1u97a

d3elna d2gm6a1 d3loia d2arca d1o75a3 d1ulya

d2d7pa1 d1v05a d2v33a d1xaka d1e44b d1gz0a2

d1d8ba d2e1fa d2hbja1 d1jmsa1 d1tuka d2fgga1

d1t33a1 d3c07a1 d1k78a2 d2uubr1 d3rnme d1wj0a

d1wc3a d1azsa d2v0na3 d1mg7a2 d2atza1 d1knza

d1d1da1 d1a8oa d3lhra d2gyka1 d1x3zb d2dewx2

d1ycsb2 d3i35a d1w6xa d1jb0e d1dfup d3cx5h

d2esha1 d1xmaa d2a5yb1 d1jhga d1v64a d1yp2a1

d3fsda d3duka d2owpa1 d2ch9a d1e7la2 d1oeda

d1brza d1jxca d2i61a d2fj8a1 d4mt2a d1a79a1

d1pdkb d2axwa1 d2okma d1eaqa d1ca1a2 d1n6za

d3igsa d3ctla d1qo2a d1twda d1tubb1 d1b12a

d2j73a d2j43a2 d3bmva2 d2g2na d1xrta1 d1d0qa

d1nnqa1 d2yw6a d3kwoa d1noga d1dvka d2fe1a1

d1oi1a2 d1wjra d1h3za d1wgsa d1bhua d1j26a

d1ygya3 d1sc6a3 d2f06a2 d2epia d2dira1 d1ppjg

d2nuha d1ukua d4affa d2vv5a2 d1vlra2 d1j0pa

d1x4aa1 d3h2ve d3md1a d2ewha1 d2ccqa1 d1h4vb1

d1qdlb d1wl8a1 d1zl0a2 d1reqb2 d2pjua1 d1vq8m1

d2cqka1 d1zh5a1 d1s6la1 d1a04a1 d1tlha d3d3ra1

d1nfga2 d1gkpa2 d2puza2 d1ht6a2 d1o0sa1 d2v8ta

d1pnha d1px9a d1gpsa d1clvi d2i9wa2 d1n13.1

d2cqva1 d1iray2 d2hp4a d1rowa d1ni5a3 d1jm7a

d1x6oa1 d1iz6a1 d2joya1 d1c0ma1 d1e0ta1 d3ccda

d1k68a d1u0sy d3a0ua d1fyxa d2fy8a1 d1seia

d2h26a1 d1hdmb1 d1ccza1 d1cwva1 d2nwta1 d1j0ta

d1jcfa2 d2zgya2 d1u6za3 d1vq8n1 d1d7ya1 d1gm5a2

d2b4aa1 d3q15c d2ayxa2 d1ccwa d2iela1 d1gu3a

d1hxma1 d1tjgh1 d1cs6a2 d1g0da3 d1bw3a d2o3bb

d1ty0a1 d1et9a1 d1qb5d d1yeza1 d2jn4a1 d2a6aa2

d1qtwa d3aala d1k77a d2basa1 d1wiwa d1up7a2

d2nv0a d1i7qb d2vrna d2csua3 d1gtea3 d2oqma1

d1g2914 d1g2913 d1fr3a d1uwva1 d1k8ma d2oufa1

d1exra d2mysb d3nxaa d1dqea d1px5a1 d2ogqa1

d2f4pa1 d1o4ta d2bnma2 d1o5la1 d1h9db d1r5sa

d1e6ia d1eqfa1 d2grca d2gsca1 d1vq8p1 d2gjva1

d2qs8a2 d3mkva2 d2ob3a d1lt7a d1g6oa d2rfba

d1hsta d1ussa d1mkma1 d1zlja d2pqra d1vkra

d1esfa1 d3seba1 d1prtd d1oxxk1 d1a1xa d1q8ca

d1ur1a d1w91a2 d2cksa d1vhna d2r8oa2 d2h2za

d2a1jb1 d1x2ia1 d1kfta d1z3eb1 d1or7c d1qe0a1

d1u78a2 d2ezia d1k78a1 d1vq8i1 d1f6va d1m1ha1

d1vtxa d1dl0a d1p8ba d1q9ba d1shyb2 d1h8d.1

d1q6oa d2czda d1tqja d1xm3a d1h6da1 d1yu0a2

d1l9na1 d1g0da1 d1ix2a d1xq4a d2bv4a d2fcja1

d1jvna2 d2abwa1 d2gk3a1 d2fzva1 d1bifa2 d1qwya

d2crya1 d1mjul1 d1iama1 d1o75a1 d1fmta1 d2pd2a

d1nkra2 d1g1ca d2yxma d1o75a2 d1e5ba d1o8ba1

d2qam01 d2j0151 d1vq8z1 d2jnea1 d1wffa d2gtvx1

d1ug1a d1k4us d1yn8a d3dkma d1f56a d1vk3a4

d1yyva1 d1z7ua1 d2foka2 d1mija d2crua1 d1g3pa2

d1v70a d1yhfa1 d2pyta1 d1cx4a1 d1t2wa d2gwfa1

d1dgsa2 d1fvia1 d2cqaa1 d1nnxa d2j97a d2dyrb2

d1sxea d1sxda d3bq7a d3ci0k1 d2gf5a2 d1iv0a

d1hkqa d2nrac1 d1fnna1 d1xsva d1ngna d2hh8a1

d1oj4a2 d1ueka2 d1k47a2 d1n0ua5 d3m7va2 d2f3la1

d2f1fa1 d2fgca1 d2hmfa3 d2bopa d2dpia1 d3d9ta1

d1m9sa2 d1m9sa3 d2akka1 d1whma d1n7oa2 d2pspa1

d2qiya d1gy7a d3ef8a1 d1nnva d2e1ba2 d2fi9a1

d1gvea d3eaua d3n2ta d1ceoa d1p5ja d1u60a

d2yr1a d3b4ua d1gvfa d1vp5a d2fywa1 d2bona1

d1pgl22 d1a6ca1 d1x36a d3rqva d1i0ra d1uxya1

d2a15a1 d1ohpa d3blza1 d2bo9b2 d2r7ja2 d1kkea2

d1m94a d1wgda d1gg3a3 d1bmlc3 d2a6qa1 d1hs7a

d1xn5a d3elia1 d3ijta d1j3ma d3reaa d1xl4a2

d1oywa1 d2axla1 d1pp7u d1kkxa d1ej5a d1q3qa3

d1xl4a1 d1n9pa d1ex0a1 d2aqma d1h7za d1xa6a1

d1rwsa d1ryja d2qjla d2piaa3 d1x3xa d1pzra

d1u8sa1 d1u8sa2 d1y7pa2 d1gh8a d1hc7a3 d1kkea1

d1he7a d3b5ha1 d1zoxa d2mcma d1y7ma1 d1v2za

d3broa1 d2bv6a1 d1u2wa1 d1ig6a d1wh8a d1c3ma

d1ug3a2 d2nsza1 d1rz4a2 d3ag3e d1sbxa d2clyb1

d2z3va d1q77a d1vbka1 d1mv8a3 d2a8na1 d1nofa1

d1av3a d1rmka d1d1ha d1flei d1gl1i d1ctaa

d1ixra1 d1cuka2 d2duya1 d1v38a d1ofcx3 d1rc9a2

d1hwmb2 d1vcla1 d1upsa2 d1dfca3 d2blna1 d1cwva5

Pivot Family

Super

Family Fold Class Decoy
d1bl0a1 d1d5ya2 d1igna1 d1rq6a d1kdxa d2nsfa2

d1vr3a1 d1zrra1 d1dgwa d3bpza d2in5a1 d1n62c2

d2cvla d1pf5a d3lmea d2ohwa1 d2c6ua d1dnu.1

d3m5va d3daqa d3e0ia d1qwga d2b3ya1 d1d3ya

d1tuza d2zkmx1 d1m45a d1ooha d1eexg d2xwsa

d2cyya2 d1i1ga2 d1q8ba d1ysja2 d1lnia d2g38a1

d2cpya1 d1u6fa1 d3ue2a d1b3ta d1e3ha5 d1f3ub

d3bmva4 d1r7aa2 d1vffa1 d1d8wa d1y9za d1qfma1

d1o4ua2 d2f7fa2 d1yira2 d2tpta3 d2evra2 d1gaka

d2fb1a1 d2fmla1 d1tbxa d1j1va d1n62a1 d1u2ma

d2ifga1 d3b5ha2 d1u2ha d1vzia1 d1ei5a1 d2ftxb1

d2y5ca d3lxfa d2bt6a d1mg4a d1i17a d1m2da

d1vc4a d1qopa d1thfd d1v93a d1o98a2 d1vjua

d1dr9a2 d2nxyb2 d1ogad2 d1cwva4 d1r8o.1 d1q0qa1

d2je8a5 d7a3ha d1hl9a2 d5ruba1 d1y8aa1 d2i06a

d2irfg d2pi0b d1xb4a1 d2cxya d2pp4a1 d1oedc

d2ix0a2 d2asba1 d1ckma1 d2qw7a1 d1b35.1 d1kve.1

d3cg4a d3eqza d1dcfa d1oi7a2 d2q4qa d1dk8a

d2pd1a1 d1y0ha d3hf5a d2czvc1 d2g30a2 d1cb8a2

d1qkka d2pl1a d1c4ka1 d2csua2 d2j01p1 d2jeka1

d3loca1 d1t56a1 d1g2ha d2htja1 d1st6a6 d1ezga

d2qrra1 d2qswa1 d1zvpa2 d2hiqa d2jxta1 d2za4b

d2qpva1 d3f08a d2ffsa1 d2pwwa1 d1wfza d1o6da

d1gkra2 d2ftwa2 d2z26a d1nqka d3nioa d1mkia

d1xwva d1nepa d1v8ha1 d1l6pa d1hn0a3 d2o0qa1

d1x4ha1 d3mdfa d1uw4a d1aopa1 d2ffma d1fftb2

d1o7ia d1iyjb3 d1x9na2 d4dfaa d2wraa d2rlda1

d3lo3a d2gffa d1mlia d1iwga4 d1vqza1 d2j01s1

d1zhva2 d1zhva1 d2nzca1 d1kp6a d1dzfa2 d1g3pa1

d2fx0a1 d1rkta1 d1iufa2 d1ku3a d2o3la1 d1ny8a

d1a04a2 d1p6qa d3heba d1eiwa d1e8ca1 d2g45a

d1mxga2 d1gcya2 d3n9ka d1zfja1 d1gy8a d2o3ia1

d3l21a d2wkja d3e96a d2d69a1 d3m7va1 d2pr9a1

d1k36a d1dx5i2 d1b9wa1 d1ehda2 d1ansa d2bcgg2

d3sj3a d2yyua d2y88a d1jpma1 d2i9ia1 d1h5wa

d1nara d2ebna d1tvna1 d1izca d1o0sa2 d1uynx

d1bdfa1 d1twfc1 d1twfk d1zq1c2 d1by2a d1jd5a

d2dk8a1 d2dk5a1 d2p6ra1 d1rp3a2 d1uptb d1x9aa

d2bhma1 d2cc3a1 d3cnxa1 d3gaxa d1jrma d2j8ga1

d1txka1 d1wzla1 d3c8da1 d1bhga1 d1whga d2nt2a

d1jmca2 d3ulla d2q2ia d3ma2b d2z0ta d1whra

d1edmb d1moxc d1b9wa2 d1lpba1 d1e8pa d1ppji

d1fu3a d1g1pa d1lupa d1deca d2dj8a1 d2vt1.1

d3qu3a d3f8ba d1ka8a d2dw4a1 d1s4ka d2nwva1

d1z05a2 d2gupa2 d2e1za1 d2v3za1 d2foka4 d1ydua1

d1p1ja2 d1yl7a2 d1xeaa2 d2dm9a1 d1n4wa2 d1rf8b

d1hyrc1 d1dn0b2 d1biha3 d1b4ra d3po8a d3arce

d1guwa d1g6za d3r93a d1ugva d2x9aa d1ng7a

d1pgl21 d1ny711 d1ng0a d1m3ya1 d2ag4a d1jb0l

d1vf8a1 d1itxa1 d1vjza d2e6fa d2x06a d2ajaa1

d1gl4b d1olza1 d1k5na1 d2b5ib1 d1wv3a1 d2ae8a1

d1rjja d1tr0a d1vqsa d1q8ka2 d2oika1 d1r2ja1

d1x5sa1 d1ufwa d1koha2 d1wj9a1 d2v94a1 d1yk4a

d1l3ka1 d1x4ea1 d1jmta d1rwua d1ghha d1pn5a1

d1sgma1 d2fq4a1 d1etxa d3bwga1 d2jrxa1 d3arch

d3grda d3fgya d1tuha d2oqea3 d1zd0a1 d1a3wa3

d2od6a1 d2op5a1 d1s7ia d1m1ha2 d1u2ca2 d1yksa1

d1e43a2 d2guya2 d2nt0a2 d1jr1a1 d2dula1 d1oj7a

d2cdqa2 d2cdqa3 d1phza1 d1zpwx1 d1mhm.1 d1ts9a

d1hxmb2 d1mjul2 d1qfoa d1tyeb1 d1r75a d2q37a1

d3b7ca1 d3bb9a1 d2k54a1 d1w6ga3 d1ayaa d2i15a1

d1to3a d1ojxa d1nvma2 d1vpya d2vbaa1 d1t5ra

d1hdma1 d1o0va1 d3oska d3qzma d1njha d1mo9a2

d1jgsa d2hr3a1 d1v4ra1 d2ga1a1 d1hy5a d2hqsa2

d1wx8a1 d2zeqa d1wspa1 d1jq4a d2ba0g2 d1f53a

d3brda1 d1my7a d3es6b1 d2vzsa3 d1ik9a1 d1zyma1

d1xwya1 d1j6oa d1bf6a d2zdra2 d1omza d2aioa

d1acwa d1r1ga d1icaa d1hy9a d1d6ga d1jmu.1

d2j3sa2 d2w0pa d1jmxa3 d1iarb2 d2iiaa d2g1da1

d1iyjb5 d1jb7a2 d1a0ia1 d1uapa d2de6a1 d1qh4a1

Appendix B

Creative Commons
Attribution-NoDerivatives 4.0
International

https://creativecommons.org/licenses/by-nd/4.0/

By exercising the Licensed Rights (defined below), You accept and agree to be bound by the
terms and conditions of this Creative Commons Attribution-NoDerivatives 4.0 International
Public License (“Public License”). To the extent this Public License may be interpreted as
a contract, You are granted the Licensed Rights in consideration of Your acceptance of these
terms and conditions, and the Licensor grants You such rights in consideration of benefits the
Licensor receives from making the Licensed Material available under these terms and conditions.

Section 1 – Definitions.

a. Adapted Material means material subject to Copyright and Similar Rights that is
derived from or based upon the Licensed Material and in which the Licensed Material is
translated, altered, arranged, transformed, or otherwise modified in a manner requiring
permission under the Copyright and Similar Rights held by the Licensor. For purposes
of this Public License, where the Licensed Material is a musical work, performance, or
sound recording, Adapted Material is always produced where the Licensed Material is
synched in timed relation with a moving image.

b. Copyright and Similar Rights means copyright and/or similar rights closely related
to copyright including, without limitation, performance, broadcast, sound recording, and
Sui Generis Database Rights, without regard to how the rights are labeled or categorized.
For purposes of this Public License, the rights specified in Section 2(b)(1)-(2) are not
Copyright and Similar Rights.

c. Effective Technological Measures means those measures that, in the absence of proper
authority, may not be circumvented under laws fulfilling obligations under Article 11 of
the WIPO Copyright Treaty adopted on December 20, 1996, and/or similar international
agreements.

193

194APPENDIX B. CREATIVE COMMONS ATTRIBUTION-NODERIVATIVES 4.0 INTERNATIONAL

d. Exceptions and Limitations means fair use, fair dealing, and/or any other exception
or limitation to Copyright and Similar Rights that applies to Your use of the Licensed
Material.

e. Licensed Material means the artistic or literary work, database, or other material to
which the Licensor applied this Public License.

f. Licensed Rights means the rights granted to You subject to the terms and conditions
of this Public License, which are limited to all Copyright and Similar Rights that apply
to Your use of the Licensed Material and that the Licensor has authority to license.

g. Licensor means the individual(s) or entity(ies) granting rights under this Public License.

h. Share means to provide material to the public by any means or process that requires
permission under the Licensed Rights, such as reproduction, public display, public perfor-
mance, distribution, dissemination, communication, or importation, and to make material
available to the public including in ways that members of the public may access the ma-
terial from a place and at a time individually chosen by them.

i. Sui Generis Database Rights means rights other than copyright resulting from Direc-
tive 96/9/EC of the European Parliament and of the Council of 11 March 1996 on the
legal protection of databases, as amended and/or succeeded, as well as other essentially
equivalent rights anywhere in the world.

j. You means the individual or entity exercising the Licensed Rights under this Public
License. Your has a corresponding meaning.

Section 2 – Scope.

a. License grant.

1. Subject to the terms and conditions of this Public License, the Licensor hereby grants
You a worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to
exercise the Licensed Rights in the Licensed Material to:

A. reproduce and Share the Licensed Material, in whole or in part; and

B. produce and reproduce, but not Share, Adapted Material.

2. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limi-
tations apply to Your use, this Public License does not apply, and You do not need to
comply with its terms and conditions.

3. Term. The term of this Public License is specified in Section 6(a).

4. Media and formats; technical modifications allowed. The Licensor authorizes You to
exercise the Licensed Rights in all media and formats whether now known or hereafter
created, and to make technical modifications necessary to do so. The Licensor waives
and/or agrees not to assert any right or authority to forbid You from making technical
modifications necessary to exercise the Licensed Rights, including technical modifica-
tions necessary to circumvent Effective Technological Measures. For purposes of this
Public License, simply making modifications authorized by this Section 2(a)(4) never
produces Adapted Material.

195

5. Downstream recipients.

A. Offer from the Licensor – Licensed Material. Every recipient of the Licensed Ma-
terial automatically receives an offer from the Licensor to exercise the Licensed
Rights under the terms and conditions of this Public License.

B. No downstream restrictions. You may not offer or impose any additional or dif-
ferent terms or conditions on, or apply any Effective Technological Measures to,
the Licensed Material if doing so restricts exercise of the Licensed Rights by any
recipient of the Licensed Material.

6. No endorsement. Nothing in this Public License constitutes or may be construed as
permission to assert or imply that You are, or that Your use of the Licensed Material
is, connected with, or sponsored, endorsed, or granted official status by, the Licensor
or others designated to receive attribution as provided in Section 3(a)(1)(A)(i).

b. Other rights.

1. Moral rights, such as the right of integrity, are not licensed under this Public License,
nor are publicity, privacy, and/or other similar personality rights; however, to the
extent possible, the Licensor waives and/or agrees not to assert any such rights held
by the Licensor to the limited extent necessary to allow You to exercise the Licensed
Rights, but not otherwise.

2. Patent and trademark rights are not licensed under this Public License.

3. To the extent possible, the Licensor waives any right to collect royalties from You for
the exercise of the Licensed Rights, whether directly or through a collecting society
under any voluntary or waivable statutory or compulsory licensing scheme. In all other
cases the Licensor expressly reserves any right to collect such royalties.

Section 3 – License Conditions.
Your exercise of the Licensed Rights is expressly made subject to the following conditions.

a. Attribution.

1. If You Share the Licensed Material, You must:

A. retain the following if it is supplied by the Licensor with the Licensed Material:

i. identification of the creator(s) of the Licensed Material and any others des-
ignated to receive attribution, in any reasonable manner requested by the
Licensor (including by pseudonym if designated);

ii. a copyright notice;

iii. a notice that refers to this Public License;

iv. a notice that refers to the disclaimer of warranties;

v. a URI or hyperlink to the Licensed Material to the extent reasonably practi-
cable;

B. indicate if You modified the Licensed Material and retain an indication of any
previous modifications; and

C. indicate the Licensed Material is licensed under this Public License, and include
the text of, or the URI or hyperlink to, this Public License.

196APPENDIX B. CREATIVE COMMONS ATTRIBUTION-NODERIVATIVES 4.0 INTERNATIONAL

For the avoidance of doubt, You do not have permission under this Public License to
Share Adapted Material.

2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based
on the medium, means, and context in which You Share the Licensed Material. For
example, it may be reasonable to satisfy the conditions by providing a URI or hyperlink
to a resource that includes the required information.

3. If requested by the Licensor, You must remove any of the information required by
Section 3(a)(1)(A) to the extent reasonably practicable.

Section 4 – Sui Generis Database Rights.
Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the
Licensed Material:

a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, repro-
duce, and Share all or a substantial portion of the contents of the database, provided You
do not Share Adapted Material;

b. if You include all or a substantial portion of the database contents in a database in which
You have Sui Generis Database Rights, then the database in which You have Sui Generis
Database Rights (but not its individual contents) is Adapted Material; and

c. You must comply with the conditions in Section 3(a) if You Share all or a substantial
portion of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations
under this Public License where the Licensed Rights include other Copyright and Similar Rights.

Section 5 – Disclaimer of Warranties and Limitation of Liability.

a. Unless otherwise separately undertaken by the Licensor, to the extent possi-
ble, the Licensor offers the Licensed Material as-is and as-available, and makes
no representations or warranties of any kind concerning the Licensed Mate-
rial, whether express, implied, statutory, or other. This includes, without
limitation, warranties of title, merchantability, fitness for a particular pur-
pose, non-infringement, absence of latent or other defects, accuracy, or the
presence or absence of errors, whether or not known or discoverable. Where
disclaimers of warranties are not allowed in full or in part, this disclaimer may
not apply to You.

b. To the extent possible, in no event will the Licensor be liable to You on
any legal theory (including, without limitation, negligence) or otherwise for
any direct, special, indirect, incidental, consequential, punitive, exemplary, or
other losses, costs, expenses, or damages arising out of this Public License
or use of the Licensed Material, even if the Licensor has been advised of the
possibility of such losses, costs, expenses, or damages. Where a limitation of
liability is not allowed in full or in part, this limitation may not apply to You.

c. The disclaimer of warranties and limitation of liability provided above shall be interpreted
in a manner that, to the extent possible, most closely approximates an absolute disclaimer
and waiver of all liability.

197

Section 6 – Term and Termination.

a. This Public License applies for the term of the Copyright and Similar Rights licensed
here. However, if You fail to comply with this Public License, then Your rights under this
Public License terminate automatically.

b. Where Your right to use the Licensed Material has terminated under Section 6(a), it
reinstates:

1. automatically as of the date the violation is cured, provided it is cured within 30 days
of Your discovery of the violation; or

2. upon express reinstatement by the Licensor.

For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may
have to seek remedies for Your violations of this Public License.

c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under
separate terms or conditions or stop distributing the Licensed Material at any time;
however, doing so will not terminate this Public License.

d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.

Section 7 – Other Terms and Conditions.

a. The Licensor shall not be bound by any additional or different terms or conditions com-
municated by You unless expressly agreed.

b. Any arrangements, understandings, or agreements regarding the Licensed Material not
stated herein are separate from and independent of the terms and conditions of this Public
License.

Section 8 – Interpretation.

a. For the avoidance of doubt, this Public License does not, and shall not be interpreted
to, reduce, limit, restrict, or impose conditions on any use of the Licensed Material that
could lawfully be made without permission under this Public License.

b. To the extent possible, if any provision of this Public License is deemed unenforceable, it
shall be automatically reformed to the minimum extent necessary to make it enforceable.
If the provision cannot be reformed, it shall be severed from this Public License without
affecting the enforceability of the remaining terms and conditions.

c. No term or condition of this Public License will be waived and no failure to comply
consented to unless expressly agreed to by the Licensor.

d. Nothing in this Public License constitutes or may be interpreted as a limitation upon,
or waiver of, any privileges and immunities that apply to the Licensor or You, including
from the legal processes of any jurisdiction or authority.

